MixMask: Revisiting Masking Strategy for Siamese ConvNets
- URL: http://arxiv.org/abs/2210.11456v4
- Date: Mon, 11 Nov 2024 14:00:40 GMT
- Title: MixMask: Revisiting Masking Strategy for Siamese ConvNets
- Authors: Kirill Vishniakov, Eric Xing, Zhiqiang Shen,
- Abstract summary: This work introduces a novel filling-based masking approach, termed textbfMixMask.
The proposed method replaces erased areas with content from a different image, effectively countering the information depletion seen in traditional masking methods.
We empirically validate our framework's enhanced performance in areas such as linear probing, semi-supervised and supervised finetuning, object detection and segmentation.
- Score: 23.946791390657875
- License:
- Abstract: The recent progress in self-supervised learning has successfully combined Masked Image Modeling (MIM) with Siamese Networks, harnessing the strengths of both methodologies. Nonetheless, certain challenges persist when integrating conventional erase-based masking within Siamese ConvNets. Two primary concerns are: (1) The continuous data processing nature of ConvNets, which doesn't allow for the exclusion of non-informative masked regions, leading to reduced training efficiency compared to ViT architecture; (2) The misalignment between erase-based masking and the contrastive-based objective, distinguishing it from the MIM technique. To address these challenges, this work introduces a novel filling-based masking approach, termed \textbf{MixMask}. The proposed method replaces erased areas with content from a different image, effectively countering the information depletion seen in traditional masking methods. Additionally, we unveil an adaptive loss function that captures the semantics of the newly patched views, ensuring seamless integration within the architectural framework. We empirically validate the effectiveness of our approach through comprehensive experiments across various datasets and application scenarios. The findings underscore our framework's enhanced performance in areas such as linear probing, semi-supervised and supervised finetuning, object detection and segmentation. Notably, our method surpasses the MSCN, establishing MixMask as a more advantageous masking solution for Siamese ConvNets. Our code and models are publicly available at https://github.com/kirill-vish/MixMask.
Related papers
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing.
We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs.
Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
arXiv Detail & Related papers (2023-12-22T02:31:31Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
We aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks.
We propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background.
arXiv Detail & Related papers (2023-09-22T09:58:38Z) - Unmasking Anomalies in Road-Scene Segmentation [18.253109627901566]
Anomaly segmentation is a critical task for driving applications.
We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
Mask2Anomaly demonstrates the feasibility of integrating an anomaly detection method in a mask-classification architecture.
arXiv Detail & Related papers (2023-07-25T08:23:10Z) - Mask to reconstruct: Cooperative Semantics Completion for Video-text
Retrieval [19.61947785487129]
Mask for Semantics Completion (MASCOT) based on semantic-based masked modeling.
Our MASCOT performs state-of-the-art performance on four major text-video retrieval benchmarks.
arXiv Detail & Related papers (2023-05-13T12:31:37Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE) are challenging to explore in large-scale 3D point clouds.
We propose a textbfGenerative textbfDecoder for MAE (GD-MAE) to automatically merges the surrounding context.
We demonstrate the efficacy of the proposed method on several large-scale benchmarks: KITTI, and ONCE.
arXiv Detail & Related papers (2022-12-06T14:32:55Z) - Exploiting Shape Cues for Weakly Supervised Semantic Segmentation [15.791415215216029]
Weakly supervised semantic segmentation (WSSS) aims to produce pixel-wise class predictions with only image-level labels for training.
We propose to exploit shape information to supplement the texture-biased property of convolutional neural networks (CNNs)
We further refine the predictions in an online fashion with a novel refinement method that takes into account both the class and the color affinities.
arXiv Detail & Related papers (2022-08-08T17:25:31Z) - Self-Supervised Visual Representations Learning by Contrastive Mask
Prediction [129.25459808288025]
We propose a novel contrastive mask prediction (CMP) task for visual representation learning.
MaskCo contrasts region-level features instead of view-level features, which makes it possible to identify the positive sample without any assumptions.
We evaluate MaskCo on training datasets beyond ImageNet and compare its performance with MoCo V2.
arXiv Detail & Related papers (2021-08-18T02:50:33Z) - Image Inpainting by End-to-End Cascaded Refinement with Mask Awareness [66.55719330810547]
Inpainting arbitrary missing regions is challenging because learning valid features for various masked regions is nontrivial.
We propose a novel mask-aware inpainting solution that learns multi-scale features for missing regions in the encoding phase.
Our framework is validated both quantitatively and qualitatively via extensive experiments on three public datasets.
arXiv Detail & Related papers (2021-04-28T13:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.