3D Human Pose Estimation in Multi-View Operating Room Videos Using
Differentiable Camera Projections
- URL: http://arxiv.org/abs/2210.11826v1
- Date: Fri, 21 Oct 2022 09:00:02 GMT
- Title: 3D Human Pose Estimation in Multi-View Operating Room Videos Using
Differentiable Camera Projections
- Authors: Beerend G.A. Gerats, Jelmer M. Wolterink, Ivo A.M.J. Broeders
- Abstract summary: We propose to directly optimise for localisation in 3D by training 2D CNNs end-to-end based on a 3D loss.
Using videos from the MVOR dataset, we show that this end-to-end approach outperforms optimisation in 2D space.
- Score: 2.486571221735935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D human pose estimation in multi-view operating room (OR) videos is a
relevant asset for person tracking and action recognition. However, the
surgical environment makes it challenging to find poses due to sterile
clothing, frequent occlusions, and limited public data. Methods specifically
designed for the OR are generally based on the fusion of detected poses in
multiple camera views. Typically, a 2D pose estimator such as a convolutional
neural network (CNN) detects joint locations. Then, the detected joint
locations are projected to 3D and fused over all camera views. However,
accurate detection in 2D does not guarantee accurate localisation in 3D space.
In this work, we propose to directly optimise for localisation in 3D by
training 2D CNNs end-to-end based on a 3D loss that is backpropagated through
each camera's projection parameters. Using videos from the MVOR dataset, we
show that this end-to-end approach outperforms optimisation in 2D space.
Related papers
- SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for sparse-view images.
SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views.
It requires only about 20 seconds to produce a textured mesh and camera poses for the input views.
arXiv Detail & Related papers (2024-08-19T17:53:10Z) - A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose
Estimation [18.72362803593654]
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues.
This can be attributed to their inherent inability to perceive spatial context as plain 2D joint coordinates carry no visual cues.
We propose a straightforward yet powerful solution: leveraging the readily available intermediate visual representations produced by off-the-shelf (pre-trained) 2D pose detectors.
arXiv Detail & Related papers (2023-11-06T18:04:13Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
We consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera.
We leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks.
In particular, we estimate the scene depth and unique person scale from normalized disparity predictions using the 2D body joints and joint angles.
arXiv Detail & Related papers (2023-01-12T18:01:28Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries [43.02373021724797]
We introduce a framework for multi-camera 3D object detection.
Our method manipulates predictions directly in 3D space.
We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
arXiv Detail & Related papers (2021-10-13T17:59:35Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines.
It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the environment.
It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
arXiv Detail & Related papers (2021-08-05T08:35:44Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
We propose a temporal regression network with a gated convolution module to transform 2D joints to 3D.
A simple yet effective localization approach is also conducted to transform the normalized pose to the global trajectory.
Our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods.
arXiv Detail & Related papers (2020-10-31T04:35:24Z) - VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild
Environment [80.77351380961264]
We present an approach to estimate 3D poses of multiple people from multiple camera views.
We present an end-to-end solution which operates in the $3$D space, therefore avoids making incorrect decisions in the 2D space.
We propose Pose Regression Network (PRN) to estimate a detailed 3D pose for each proposal.
arXiv Detail & Related papers (2020-04-13T23:50:01Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs.
It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space.
The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset.
arXiv Detail & Related papers (2020-03-25T00:26:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.