XAI for transparent wind turbine power curve models
- URL: http://arxiv.org/abs/2210.12104v2
- Date: Tue, 18 Apr 2023 12:50:10 GMT
- Title: XAI for transparent wind turbine power curve models
- Authors: Simon Letzgus
- Abstract summary: We use Shapley values and XAI to uncover strategies machine learning models have learned from operational wind turbine data.
Our findings reveal that the trend towards ever larger model architectures, driven by a focus on test set performance, can result in physically implausible model strategies.
We propose a practical approach to utilize explanations for root cause analysis in the context of wind turbine performance monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate wind turbine power curve models, which translate ambient conditions
into turbine power output, are crucial for wind energy to scale and fulfill its
proposed role in the global energy transition. While machine learning (ML)
methods have shown significant advantages over parametric, physics-informed
approaches, they are often criticised for being opaque 'black boxes', which
hinders their application in practice. We apply Shapley values, a popular
explainable artificial intelligence (XAI) method, and the latest findings from
XAI for regression models, to uncover the strategies ML models have learned
from operational wind turbine data. Our findings reveal that the trend towards
ever larger model architectures, driven by a focus on test set performance, can
result in physically implausible model strategies. Therefore, we call for a
more prominent role of XAI methods in model selection. Moreover, we propose a
practical approach to utilize explanations for root cause analysis in the
context of wind turbine performance monitoring. This can help to reduce
downtime and increase the utilization of turbines in the field.
Related papers
- Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
This paper focuses on the concept of task-specific directions (TSDs)-critical for transitioning large models from pretrained states to task-specific enhancements in PEFT.
We introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks.
arXiv Detail & Related papers (2024-09-02T08:10:51Z) - Equipment Health Assessment: Time Series Analysis for Wind Turbine
Performance [1.533848041901807]
We leverage SCADA data from diverse wind turbines to predict power output, employing advanced time series methods.
A key innovation lies in the ensemble of FNN and LSTM models, capitalizing on their collective learning.
Machine learning techniques are applied to detect wind turbine performance deterioration, enabling proactive maintenance strategies.
arXiv Detail & Related papers (2024-03-01T20:54:31Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - An XAI framework for robust and transparent data-driven wind turbine
power curve models [0.8547032097715571]
Wind turbine power curve models translate ambient conditions into turbine power output.
In recent years, increasingly complex machine learning methods have become state-of-the-art for this task.
We introduce an explainable artificial intelligence framework to investigate and validate strategies learned by data-driven power curve models.
arXiv Detail & Related papers (2023-04-19T17:37:58Z) - Modeling Wind Turbine Performance and Wake Interactions with Machine
Learning [0.0]
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm.
ML methods for data quality control and pre-processing are applied to the data set under investigation.
A hybrid model is found to achieve high accuracy for modeling wind turbine power capture.
arXiv Detail & Related papers (2022-12-02T23:07:05Z) - End-to-end Wind Turbine Wake Modelling with Deep Graph Representation
Learning [7.850747042819504]
This work proposes a surrogate model for the representation of wind turbine wakes based on a graph representation learning method termed a graph neural network.
The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data.
A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation.
arXiv Detail & Related papers (2022-11-24T15:00:06Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.