MS-DCANet: A Novel Segmentation Network For Multi-Modality COVID-19
Medical Images
- URL: http://arxiv.org/abs/2210.12361v4
- Date: Wed, 19 Jul 2023 06:54:25 GMT
- Title: MS-DCANet: A Novel Segmentation Network For Multi-Modality COVID-19
Medical Images
- Authors: Xiaoyu Pan, Huazheng Zhu, Jinglong Du, Guangtao Hu, Baoru Han,
Yuanyuan Jia
- Abstract summary: The Coronavirus Disease 2019 (COVID-19) pandemic has increased the public health burden and brought profound disaster to humans.
For the particularity of the COVID-19 medical images with blurred boundaries, low contrast and different infection sites, some researchers have improved the accuracy by adding more complexity.
This paper proposes a symmetric automatic segmentation framework named MSDCANet.
- Score: 3.340523650338255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Coronavirus Disease 2019 (COVID-19) pandemic has increased the public
health burden and brought profound disaster to humans. For the particularity of
the COVID-19 medical images with blurred boundaries, low contrast and different
infection sites, some researchers have improved the accuracy by adding more
complexity. Also, they overlook the complexity of lesions, which hinder their
ability to capture the relationship between segmentation sites and the
background, as well as the edge contours and global context. However,
increasing the computational complexity, parameters and inference speed is
unfavorable for model transfer from laboratory to clinic. A perfect
segmentation network needs to balance the above three factors completely. To
solve the above issues, this paper propose a symmetric automatic segmentation
framework named MS-DCANet. We introduce Tokenized MLP block, a novel attention
scheme that use a shift-window mechanism to conditionally fuse local and global
features to get more continuous boundaries and spatial positioning
capabilities. It has greater understanding of irregular lesions contours.
MS-DCANet also uses several Dual Channel blocks and a Res-ASPP block to improve
the ability to recognize small targets. On multi-modality COVID-19 tasks,
MS-DCANet achieved state-of-the-art performance compared with other baselines.
It can well trade off the accuracy and complexity. To prove the strong
generalization ability of our proposed model, we apply it to other tasks (ISIC
2018 and BAA) and achieve satisfactory results.
Related papers
- CDSE-UNet: Enhancing COVID-19 CT Image Segmentation with Canny Edge
Detection and Dual-Path SENet Feature Fusion [10.831487161893305]
CDSE-UNet is a novel UNet-based segmentation model that integrates Canny operator edge detection and a dual-path SENet feature fusion mechanism.
We have developed a Multiscale Convolution approach, replacing the standard Convolution in UNet, to adapt to the varied lesion sizes and shapes.
Our evaluations on public datasets demonstrate CDSE-UNet's superior performance over other leading models.
arXiv Detail & Related papers (2024-03-03T13:36:07Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical
Image Segmentation [7.720152925974362]
We propose a 2D medical image segmentation model called Multi-scale Cross Perceptron Attention Network (MCPA)
The MCPA consists of three main components: an encoder, a decoder, and a Cross Perceptron.
We evaluate our proposed MCPA model on several publicly available medical image datasets from different tasks and devices.
arXiv Detail & Related papers (2023-07-27T02:18:12Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - MedViT: A Robust Vision Transformer for Generalized Medical Image
Classification [4.471084427623774]
We propose a robust yet efficient CNN-Transformer hybrid model which is equipped with the locality of CNNs and the global connectivity of vision Transformers.
Our proposed hybrid model demonstrates its high robustness and generalization ability compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D datasets.
arXiv Detail & Related papers (2023-02-19T02:55:45Z) - Full-scale Deeply Supervised Attention Network for Segmenting COVID-19
Lesions [0.24366811507669117]
We introduce the Full-scale Deeply Supervised Attention Network (FuDSA-Net) for efficient segmentation of corona-infected lung areas in CT images.
The model considers activation responses from all levels of the encoding path, encompassing multi-scalar features acquired at different levels of the network.
Incorporation of the entire gamut of multi-scalar characteristics into the novel attention mechanism helps prioritize the selection of activation responses and locations containing useful information.
arXiv Detail & Related papers (2022-10-27T16:05:47Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.