B$^3$RTDP: A Belief Branch and Bound Real-Time Dynamic Programming
Approach to Solving POMDPs
- URL: http://arxiv.org/abs/2210.12556v1
- Date: Sat, 22 Oct 2022 21:42:59 GMT
- Title: B$^3$RTDP: A Belief Branch and Bound Real-Time Dynamic Programming
Approach to Solving POMDPs
- Authors: Sigurdur Orn Adalgeirsson, Cynthia Breazeal
- Abstract summary: We propose an extension to the RTDP-Bel algorithm which we call Belief Branch and Bound RTDP (B$3$RTDP)
Our algorithm uses a bounded value function representation and takes advantage of this in two novel ways.
We empirically demonstrate that B$3$RTDP can achieve greater returns in less time than the state-of-the-art SARSOP solver on known POMDP problems.
- Score: 17.956744635160568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partially Observable Markov Decision Processes (POMDPs) offer a promising
world representation for autonomous agents, as they can model both transitional
and perceptual uncertainties. Calculating the optimal solution to POMDP
problems can be computationally expensive as they require reasoning over the
(possibly infinite) space of beliefs. Several approaches have been proposed to
overcome this difficulty, such as discretizing the belief space, point-based
belief sampling, and Monte Carlo tree search. The Real-Time Dynamic Programming
approach of the RTDP-Bel algorithm approximates the value function by storing
it in a hashtable with discretized belief keys. We propose an extension to the
RTDP-Bel algorithm which we call Belief Branch and Bound RTDP (B$^3$RTDP). Our
algorithm uses a bounded value function representation and takes advantage of
this in two novel ways: a search-bounding technique based on action selection
convergence probabilities, and a method for leveraging early action convergence
called the \textit{Convergence Frontier}. Lastly, we empirically demonstrate
that B$^3$RTDP can achieve greater returns in less time than the
state-of-the-art SARSOP solver on known POMDP problems.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives [16.101435842520473]
This paper studies the challenging yet important problem in POMDPs known as the (indefinite-horizon) Maximal Reachability Probability Problem.
Inspired by the success of point-based methods developed for discounted problems, we study their extensions to MRPP.
We present a novel algorithm that leverages the strengths of these techniques for efficient exploration of the belief space.
arXiv Detail & Related papers (2024-06-05T02:33:50Z) - Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
Planning under uncertainty can be mathematically formalized using partially observable Markov decision processes (POMDPs)
Finding an optimal plan for POMDPs can be computationally expensive and is feasible only for small tasks.
We derive a deterministic relationship between a simplified solution that is easier to obtain and the theoretically optimal one.
arXiv Detail & Related papers (2023-10-03T04:40:38Z) - Model-Based Reinforcement Learning with Multinomial Logistic Function Approximation [10.159501412046508]
We study model-based reinforcement learning (RL) for episodic Markov decision processes (MDP)
We establish a provably efficient RL algorithm for the MDP whose state transition is given by a multinomial logistic model.
To the best of our knowledge, this is the first model-based RL algorithm with multinomial logistic function approximation with provable guarantees.
arXiv Detail & Related papers (2022-12-27T16:25:09Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z) - Under-Approximating Expected Total Rewards in POMDPs [68.8204255655161]
We consider the optimal expected total reward to reach a goal state in a partially observable Markov decision process (POMDP)
We use mixed-integer linear programming (MILP) to find such minimal probability shifts and experimentally show that our techniques scale quite well.
arXiv Detail & Related papers (2022-01-21T16:43:03Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Provably Efficient Model-Free Algorithm for MDPs with Peak Constraints [38.2783003051101]
This paper considers the peak Constrained Markov Decision Process (PCMDP), where the agent chooses the policy to maximize total reward in the finite horizon as well as satisfy constraints at each epoch with probability 1.
We propose a model-free algorithm that converts PCMDP problem to an unconstrained problem and a Q-learning based approach is applied.
arXiv Detail & Related papers (2020-03-11T23:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.