Face Emotion Recognization Using Dataset Augmentation Based on Neural
Network
- URL: http://arxiv.org/abs/2210.12689v1
- Date: Sun, 23 Oct 2022 10:21:45 GMT
- Title: Face Emotion Recognization Using Dataset Augmentation Based on Neural
Network
- Authors: Mengyu Rao, Ruiyi Bao and Liangshun Dong
- Abstract summary: Facial expression is one of the most external indications of a person's feelings and emotions.
It plays an important role in coordinating interpersonal relationships.
As a branch of the field of analyzing sentiment, facial expression recognition offers broad application prospects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Facial expression is one of the most external indications of a person's
feelings and emotions. In daily conversation, according to the psychologist,
only 7\% and 38\% of information is communicated through words and sounds
respective, while up to 55\% is through facial expression. It plays an
important role in coordinating interpersonal relationships. Ekman and Friesen
recognized six essential emotions in the nineteenth century depending on a
cross-cultural study, which indicated that people feel each basic emotion in
the same fashion despite culture. As a branch of the field of analyzing
sentiment, facial expression recognition offers broad application prospects in
a variety of domains, including the interaction between humans and computers,
healthcare, and behavior monitoring. Therefore, many researchers have devoted
themselves to facial expression recognition. In this paper, an effective hybrid
data augmentation method is used. This approach is operated on two public
datasets, and four benchmark models see some remarkable results.
Related papers
- Exploring Emotion Expression Recognition in Older Adults Interacting
with a Virtual Coach [22.00225071959289]
EMPATHIC project aimed to design an emotionally expressive virtual coach capable of engaging healthy seniors to improve well-being and promote independent aging.
This paper outlines the development of the emotion expression recognition module of the virtual coach, encompassing data collection, annotation design, and a first methodological approach.
arXiv Detail & Related papers (2023-11-09T18:22:32Z) - Emotion Recognition for Challenged People Facial Appearance in Social
using Neural Network [0.0]
Face expression is used in CNN to categorize the acquired picture into different emotion categories.
This paper proposes an idea for face and enlightenment invariant credit of facial expressions by the images.
arXiv Detail & Related papers (2023-05-11T14:38:27Z) - Real-time Emotion and Gender Classification using Ensemble CNN [0.0]
This paper is the implementation of an Ensemble CNN for building a real-time system that can detect emotion and gender of the person.
Our work can predict emotion and gender on single face images as well as multiple face images.
arXiv Detail & Related papers (2021-11-15T13:51:35Z) - Multi-Cue Adaptive Emotion Recognition Network [4.570705738465714]
We propose a new deep learning approach for emotion recognition based on adaptive multi-cues.
We compare the proposed approach with the state-of-art approaches in the CAER-S dataset.
arXiv Detail & Related papers (2021-11-03T15:08:55Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
We evaluate how the recently proposed FaceChannel adapts towards recognizing facial expressions from persons with masks.
We also perform specific feature-level visualization to demonstrate how the inherent capabilities of the FaceChannel to learn and combine facial features change when in a constrained social interaction scenario.
arXiv Detail & Related papers (2021-04-16T20:03:30Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Learning Emotional-Blinded Face Representations [77.7653702071127]
We propose two face representations that are blind to facial expressions associated to emotional responses.
This work is motivated by new international regulations for personal data protection.
arXiv Detail & Related papers (2020-09-18T09:24:10Z) - Context Based Emotion Recognition using EMOTIC Dataset [22.631542327834595]
We present EMOTIC, a dataset of images of people annotated with their apparent emotion.
Using the EMOTIC dataset we train different CNN models for emotion recognition.
Our results show how scene context provides important information to automatically recognize emotional states.
arXiv Detail & Related papers (2020-03-30T12:38:50Z) - Emotion Recognition From Gait Analyses: Current Research and Future
Directions [48.93172413752614]
gait conveys information about the walker's emotion.
The mapping between various emotions and gait patterns provides a new source for automated emotion recognition.
gait is remotely observable, more difficult to imitate, and requires less cooperation from the subject.
arXiv Detail & Related papers (2020-03-13T08:22:33Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
We present a novel Fine-grained Facial Expression Database - F2ED.
It includes more than 200k images with 54 facial expressions from 119 persons.
Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we evaluate several tasks of few-shot expression learning.
We propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images.
arXiv Detail & Related papers (2020-01-17T03:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.