Multi-Person 3D Pose and Shape Estimation via Inverse Kinematics and
Refinement
- URL: http://arxiv.org/abs/2210.13529v1
- Date: Mon, 24 Oct 2022 18:29:06 GMT
- Title: Multi-Person 3D Pose and Shape Estimation via Inverse Kinematics and
Refinement
- Authors: Junuk Cha, Muhammad Saqlain, GeonU Kim, Mingyu Shin, Seungryul Baek
- Abstract summary: Estimating 3D poses and shapes in the form of meshes from monocular RGB images is challenging.
We propose a coarse-to-fine pipeline that benefits from 1) inverse kinematics from the occlusion-robust 3D skeleton estimation.
We demonstrate the effectiveness of our method, outperforming state-of-the-arts on 3DPW, MuPoTS and AGORA datasets.
- Score: 5.655207244072081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating 3D poses and shapes in the form of meshes from monocular RGB
images is challenging. Obviously, it is more difficult than estimating 3D poses
only in the form of skeletons or heatmaps. When interacting persons are
involved, the 3D mesh reconstruction becomes more challenging due to the
ambiguity introduced by person-to-person occlusions. To tackle the challenges,
we propose a coarse-to-fine pipeline that benefits from 1) inverse kinematics
from the occlusion-robust 3D skeleton estimation and 2) Transformer-based
relation-aware refinement techniques. In our pipeline, we first obtain
occlusion-robust 3D skeletons for multiple persons from an RGB image. Then, we
apply inverse kinematics to convert the estimated skeletons to deformable 3D
mesh parameters. Finally, we apply the Transformer-based mesh refinement that
refines the obtained mesh parameters considering intra- and inter-person
relations of 3D meshes. Via extensive experiments, we demonstrate the
effectiveness of our method, outperforming state-of-the-arts on 3DPW, MuPoTS
and AGORA datasets.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
We introduce SkelFormer, a novel markerless motion capture pipeline for multi-view human pose and shape estimation.
Our method first uses off-the-shelf 2D keypoint estimators, pre-trained on large-scale in-the-wild data, to obtain 3D joint positions.
Next, we design a regression-based inverse-kinematic skeletal transformer that maps the joint positions to pose and shape representations from heavily noisy observations.
arXiv Detail & Related papers (2024-04-19T04:51:18Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - 3D shape reconstruction of semi-transparent worms [0.950214811819847]
3D shape reconstruction typically requires identifying object features or textures in multiple images of a subject.
Here we overcome these challenges by rendering a candidate shape with adaptive blurring and transparency for comparison with the images.
We model the slender Caenorhabditis elegans as a 3D curve using an intrinsic parametrisation that naturally admits biologically-informed constraints and regularisation.
arXiv Detail & Related papers (2023-04-28T13:29:36Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
We propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation without skin-collapsing artifacts.
In the endeavor to register 2D pixels across different frames, we establish a correspondence between canonical feature embeddings that encodes 3D points within the canonical space.
Our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:49:04Z) - Permutation-Invariant Relational Network for Multi-person 3D Pose
Estimation [46.38290735670527]
Recovering multi-person 3D poses from a single RGB image is a severely ill-conditioned problem.
Recent works have shown promising results by simultaneously reasoning for different people but in all cases within a local neighborhood.
PI-Net introduces a self-attention block to reason for all people in the image at the same time and refine potentially noisy initial 3D poses.
In this paper, we model people interactions at a whole, independently of their number, and in a permutation-invariant manner building upon the Set Transformer.
arXiv Detail & Related papers (2022-04-11T07:23:54Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
We propose a novel hybrid inverse kinematics solution (HybrIK) to bridge the gap between body mesh estimation and 3D keypoint estimation.
HybrIK directly transforms accurate 3D joints to relative body-part rotations for 3D body mesh reconstruction.
We show that HybrIK preserves both the accuracy of 3D pose and the realistic body structure of the parametric human model.
arXiv Detail & Related papers (2020-11-30T10:32:30Z) - Monocular, One-stage, Regression of Multiple 3D People [105.3143785498094]
We propose to Regress all meshes in a One-stage fashion for Multiple 3D People (termed ROMP)
Our method simultaneously predicts a Body Center heatmap and a Mesh map, which can jointly describe the 3D body mesh on the pixel level.
Compared with state-of-the-art methods, ROMP superior performance on the challenging multi-person benchmarks.
arXiv Detail & Related papers (2020-08-27T17:21:47Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.