Learned Lifted Linearization Applied to Unstable Dynamic Systems Enabled
by Koopman Direct Encoding
- URL: http://arxiv.org/abs/2210.13602v1
- Date: Mon, 24 Oct 2022 20:55:46 GMT
- Title: Learned Lifted Linearization Applied to Unstable Dynamic Systems Enabled
by Koopman Direct Encoding
- Authors: Jerry Ng, H. Harry Asada
- Abstract summary: It is known that DMD and other data-driven methods face a fundamental difficulty in constructing a Koopman model when applied to unstable systems.
Here we solve the problem by incorporating knowledge about a nonlinear state equation with a learning method for finding an effective set of observables.
The proposed method shows a dramatic improvement over existing DMD and data-driven methods.
- Score: 11.650381752104296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a Koopman lifting linearization method that is applicable
to nonlinear dynamical systems having both stable and unstable regions. It is
known that DMD and other standard data-driven methods face a fundamental
difficulty in constructing a Koopman model when applied to unstable systems.
Here we solve the problem by incorporating knowledge about a nonlinear state
equation with a learning method for finding an effective set of observables. In
a lifted space, stable and unstable regions are separated into independent
subspaces. Based on this property, we propose to find effective observables
through neural net training where training data are separated into stable and
unstable trajectories. The resultant learned observables are used for
constructing a linear state transition matrix using method known as Direct
Encoding, which transforms the nonlinear state equation to a state transition
matrix through inner product computations with the observables. The proposed
method shows a dramatic improvement over existing DMD and data-driven methods.
Related papers
- Learning Control-Oriented Dynamical Structure from Data [25.316358215670274]
We discuss a state-dependent nonlinear tracking controller formulation for general nonlinear control-affine systems.
We empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking.
arXiv Detail & Related papers (2023-02-06T02:01:38Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Learning Stable Koopman Embeddings [9.239657838690228]
We present a new data-driven method for learning stable models of nonlinear systems.
We prove that every discrete-time nonlinear contracting model can be learnt in our framework.
arXiv Detail & Related papers (2021-10-13T05:44:13Z) - Deep Learning Enhanced Dynamic Mode Decomposition [0.0]
We use convolutional autoencoder networks to simultaneously find optimal families of observables.
We also generate both accurate embeddings of the flow into a space of observables and immersions of the observables back into flow coordinates.
This network results in a global transformation of the flow and affords future state prediction via EDMD and the decoder network.
arXiv Detail & Related papers (2021-08-10T03:54:23Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error.
We construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound.
When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods.
arXiv Detail & Related papers (2020-10-12T15:15:13Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Sparse Identification of Nonlinear Dynamical Systems via Reweighted
$\ell_1$-regularized Least Squares [62.997667081978825]
This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear systems from noisy state measurements.
The aim of this work is to improve the accuracy and robustness of the method in the presence of state measurement noise.
arXiv Detail & Related papers (2020-05-27T08:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.