Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning
- URL: http://arxiv.org/abs/2210.13846v1
- Date: Tue, 25 Oct 2022 09:08:26 GMT
- Title: Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning
- Authors: Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, Joni Pajarinen
- Abstract summary: Offline reinforcement learning, by learning from a fixed dataset, makes it possible to learn agent behaviors without interacting with the environment.
During online fine-tuning, the performance of the pre-trained agent may collapse quickly due to the sudden distribution shift from offline to online data.
We propose to adaptively weigh the behavior cloning loss during online fine-tuning based on the agent's performance and training stability.
Experiments show that the proposed method yields state-of-the-art offline-to-online reinforcement learning performance on the popular D4RL benchmark.
- Score: 80.25648265273155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning, by learning from a fixed dataset, makes it
possible to learn agent behaviors without interacting with the environment.
However, depending on the quality of the offline dataset, such pre-trained
agents may have limited performance and would further need to be fine-tuned
online by interacting with the environment. During online fine-tuning, the
performance of the pre-trained agent may collapse quickly due to the sudden
distribution shift from offline to online data. While constraints enforced by
offline RL methods such as a behaviour cloning loss prevent this to an extent,
these constraints also significantly slow down online fine-tuning by forcing
the agent to stay close to the behavior policy. We propose to adaptively weigh
the behavior cloning loss during online fine-tuning based on the agent's
performance and training stability. Moreover, we use a randomized ensemble of Q
functions to further increase the sample efficiency of online fine-tuning by
performing a large number of learning updates. Experiments show that the
proposed method yields state-of-the-art offline-to-online reinforcement
learning performance on the popular D4RL benchmark. Code is available:
\url{https://github.com/zhaoyi11/adaptive_bc}.
Related papers
- Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance.
We propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective.
arXiv Detail & Related papers (2023-12-15T14:49:41Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
We propose a novel framework called ENsemble-based Offline-To-Online (ENOTO) RL.
By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance.
Experimental results demonstrate that ENOTO can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods.
arXiv Detail & Related papers (2023-06-12T05:10:10Z) - Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs
and Practical Solutions [30.050083797177706]
offline reinforcement learning (RL) allows for the training of competent agents from offline datasets without any interaction with the environment.
Online finetuning of such offline models can further improve performance.
We show that it is possible to use standard online off-policy algorithms for faster improvement.
arXiv Detail & Related papers (2023-03-30T14:08:31Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Curriculum Offline Imitation Learning [72.1015201041391]
offline reinforcement learning tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment.
We propose textitCurriculum Offline Learning (COIL), which utilizes an experience picking strategy for imitating from adaptive neighboring policies with a higher return.
On continuous control benchmarks, we compare COIL against both imitation-based and RL-based methods, showing that it not only avoids just learning a mediocre behavior on mixed datasets but is also even competitive with state-of-the-art offline RL methods.
arXiv Detail & Related papers (2021-11-03T08:02:48Z) - Offline-to-Online Reinforcement Learning via Balanced Replay and
Pessimistic Q-Ensemble [135.6115462399788]
Deep offline reinforcement learning has made it possible to train strong robotic agents from offline datasets.
State-action distribution shift may lead to severe bootstrap error during fine-tuning.
We propose a balanced replay scheme that prioritizes samples encountered online while also encouraging the use of near-on-policy samples.
arXiv Detail & Related papers (2021-07-01T16:26:54Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
In many practical applications, the situation is reversed: an agent may have access to large amounts of undirected offline experience data, while access to the online environment is severely limited.
Our main insight is that, when presented with offline data composed of a variety of behaviors, an effective way to leverage this data is to extract a continuous space of recurring and temporally extended primitive behaviors.
In addition to benefiting offline policy optimization, we show that performing offline primitive learning in this way can also be leveraged for improving few-shot imitation learning.
arXiv Detail & Related papers (2020-10-26T14:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.