Comparing neural network training performance between Elixir and Python
- URL: http://arxiv.org/abs/2210.13945v1
- Date: Tue, 25 Oct 2022 11:57:14 GMT
- Title: Comparing neural network training performance between Elixir and Python
- Authors: Lucas C. Tavano, Lucas K. Amin, Adolfo Gustavo Serra-Seca-Neto
- Abstract summary: Python has made a name for itself as one of the main programming languages.
In February 2021, Jos'e Valim and Sean Moriarity published the first version of the Numerical Elixir (Nx) library.
- Score: 0.9023847175654603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With a wide range of libraries focused on the machine learning market, such
as TensorFlow, NumPy, Pandas, Keras, and others, Python has made a name for
itself as one of the main programming languages. In February 2021, Jos\'e Valim
and Sean Moriarity published the first version of the Numerical Elixir (Nx)
library, a library for tensor operations written in Elixir. Nx aims to allow
the language be a good choice for GPU-intensive operations. This work aims to
compare the results of Python and Elixir on training convolutional neural
networks (CNN) using MNIST and CIFAR-10 datasets, concluding that Python
achieved overall better results, and that Elixir is already a viable
alternative.
Related papers
- No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax [0.8408735228878615]
We developed a jitted compiler for training Artificial Neural Networks using C++, LLVM and Cuda.
It features object-oriented characteristics, strong typing, parallel workers for data pre-processing, pythonic syntax for expressions, PyTorch like model declaration and Automatic Differentiation.
arXiv Detail & Related papers (2024-09-17T23:15:39Z) - iSpLib: A Library for Accelerating Graph Neural Networks using Auto-tuned Sparse Operations [1.3030767447016454]
iSpLib is a PyTorch-based C++ library equipped with auto-tuned sparse operations.
We demonstrate that iSpLib obtains up to 27x overall training speedup compared to the equivalent PyTorch 2.1.0 and PyTorch Geometric 2.4.0 implementations on the CPU.
arXiv Detail & Related papers (2024-03-21T21:56:44Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfn is a PyTorch library that aims to address this need.
It provides users with a simple API for environments and useful abstractions for samplers and losses.
arXiv Detail & Related papers (2023-05-24T00:20:59Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGOD is an open-source library for detecting outliers in graph data.
It supports a wide array of leading graph-based methods for outlier detection.
PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI)
arXiv Detail & Related papers (2022-04-26T06:15:21Z) - Continual Inference: A Library for Efficient Online Inference with Deep
Neural Networks in PyTorch [97.03321382630975]
Continual Inference is a Python library for implementing Continual Inference Networks (CINs) in PyTorch.
We offer a comprehensive introduction to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning.
arXiv Detail & Related papers (2022-04-07T13:03:09Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM is an object-oriented Python implementation of Heterogeneous-Hidden Markov Models (HHMMs)
PyHHMM emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training.
PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License.
arXiv Detail & Related papers (2022-01-12T07:32:36Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
We show how it is possible to meet performance and packaging constraints while performing inference in Python.
We present a way of using multiple Python interpreters within a single process to achieve scalable inference.
arXiv Detail & Related papers (2021-04-01T04:48:52Z) - TensorX: Extensible API for Neural Network Model Design and Deployment [0.0]
TensorFlowX is a Python library for prototyping, design, and deployment of complex neural network models in computation.
A special emphasis is put on ease of use, performance, and API consistency.
arXiv Detail & Related papers (2020-12-29T00:15:38Z) - On the distance between two neural networks and the stability of
learning [59.62047284234815]
This paper relates parameter distance to gradient breakdown for a broad class of nonlinear compositional functions.
The analysis leads to a new distance function called deep relative trust and a descent lemma for neural networks.
arXiv Detail & Related papers (2020-02-09T19:18:39Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.