Cross-View Image Sequence Geo-localization
- URL: http://arxiv.org/abs/2210.14295v1
- Date: Tue, 25 Oct 2022 19:46:18 GMT
- Title: Cross-View Image Sequence Geo-localization
- Authors: Xiaohan Zhang, Waqas Sultani, Safwan Wshah
- Abstract summary: Cross-view geo-localization aims to estimate the GPS location of a query ground-view image.
Recent approaches use panoramic ground-view images to increase the range of visibility.
We present the first cross-view geo-localization method that works on a sequence of limited Field-Of-View images.
- Score: 6.555961698070275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-view geo-localization aims to estimate the GPS location of a query
ground-view image by matching it to images from a reference database of
geo-tagged aerial images. To address this challenging problem, recent
approaches use panoramic ground-view images to increase the range of
visibility. Although appealing, panoramic images are not readily available
compared to the videos of limited Field-Of-View (FOV) images. In this paper, we
present the first cross-view geo-localization method that works on a sequence
of limited FOV images. Our model is trained end-to-end to capture the temporal
structure that lies within the frames using the attention-based temporal
feature aggregation module. To robustly tackle different sequences length and
GPS noises during inference, we propose to use a sequential dropout scheme to
simulate variant length sequences. To evaluate the proposed approach in
realistic settings, we present a new large-scale dataset containing ground-view
sequences along with the corresponding aerial-view images. Extensive
experiments and comparisons demonstrate the superiority of the proposed
approach compared to several competitive baselines.
Related papers
- Tightly-Coupled, Speed-aided Monocular Visual-Inertial Localization in Topological Map [0.7373617024876725]
This paper proposes a novel algorithm for vehicle speed-aided monocular visual-inertial localization using a topological map.
The proposed system aims to address the limitations of existing methods that rely heavily on expensive sensors like GPS and LiDAR.
arXiv Detail & Related papers (2024-11-08T11:55:27Z) - Style Alignment based Dynamic Observation Method for UAV-View Geo-localization [7.185123213523453]
We propose a style alignment based dynamic observation method for UAV-view geo-localization.
Specifically, we introduce a style alignment strategy to transfrom the diverse visual style of drone-view images into a unified satellite images visual style.
A dynamic observation module is designed to evaluate the spatial distribution of images by mimicking human observation habits.
arXiv Detail & Related papers (2024-07-03T06:19:42Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - CVLNet: Cross-View Semantic Correspondence Learning for Video-based
Camera Localization [89.69214577915959]
This paper tackles the problem of Cross-view Video-based camera localization.
We propose estimating the query camera's relative displacement to a satellite image before similarity matching.
Experiments have demonstrated the effectiveness of video-based localization over single image-based localization.
arXiv Detail & Related papers (2022-08-07T07:35:17Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Multi-view Drone-based Geo-localization via Style and Spatial Alignment [47.95626612936813]
Multi-view multi-source geo-localization serves as an important auxiliary method of GPS positioning by matching drone-view image and satellite-view image with pre-annotated GPS tag.
We propose an elegant orientation-based method to align the patterns and introduce a new branch to extract aligned partial feature.
arXiv Detail & Related papers (2020-06-23T15:44:02Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
Cross-view geo-localization is a problem given a large-scale database of geo-tagged aerial images.
Knowing orientation between ground and aerial images can significantly reduce matching ambiguity between these two views.
We design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization.
arXiv Detail & Related papers (2020-05-08T05:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.