JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities
- URL: http://arxiv.org/abs/2210.14312v3
- Date: Mon, 4 Sep 2023 20:35:48 GMT
- Title: JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities
- Authors: Pouria Mistani, Samira Pakravan, Rajesh Ilango, Frederic Gibou
- Abstract summary: This strategy can be used to efficiently train neural network surrogate models of partial differential equations.
The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system.
We show NBM is competitive in terms of memory and training speed with other PINN-type frameworks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a scalable strategy for development of mesh-free hybrid
neuro-symbolic partial differential equation solvers based on existing
mesh-based numerical discretization methods. Particularly, this strategy can be
used to efficiently train neural network surrogate models of partial
differential equations by (i) leveraging the accuracy and convergence
properties of advanced numerical methods, solvers, and preconditioners, as well
as (ii) better scalability to higher order PDEs by strictly limiting
optimization to first order automatic differentiation. The presented neural
bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite
discretization residuals of the PDE system obtained on implicit Cartesian cells
centered on a set of random collocation points with respect to trainable
parameters of the neural network. Importantly, the conservation laws and
symmetries present in the bootstrapped finite discretization equations inform
the neural network about solution regularities within local neighborhoods of
training points. We apply NBM to the important class of elliptic problems with
jump conditions across irregular interfaces in three spatial dimensions. We
show the method is convergent such that model accuracy improves by increasing
number of collocation points in the domain and predonditioning the residuals.
We show NBM is competitive in terms of memory and training speed with other
PINN-type frameworks. The algorithms presented here are implemented using
\texttt{JAX} in a software package named \texttt{JAX-DIPS}
(https://github.com/JAX-DIPS/JAX-DIPS), standing for differentiable interfacial
PDE solver. We open sourced \texttt{JAX-DIPS} to facilitate research into use
of differentiable algorithms for developing hybrid PDE solvers.
Related papers
- Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
We represent the PDE as a neural network and use an intermediate state representation similar to a Physics-Informed Neural Network (PINN)
We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem.
Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method.
arXiv Detail & Related papers (2024-05-30T01:55:44Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
We present two effective methods for solving high-dimensional partial differential equations (PDE) based on randomized neural networks.
We present ample numerical simulations for a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their performance.
arXiv Detail & Related papers (2023-09-13T15:59:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
We propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.
We provide theoretical guarantees for the correctness and convergence of neural solvers analogous to conventional iterative solvers.
arXiv Detail & Related papers (2021-09-03T12:03:10Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines.
Recent advances in deep learning have shown the great potential of physics-informed neural networks (NNs) to solve PDEs as a basis for data-driven inverse analysis.
We propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhCRyNet-s) for solving PDEs without any labeled data.
arXiv Detail & Related papers (2021-06-26T22:22:19Z) - Hybrid FEM-NN models: Combining artificial neural networks with the
finite element method [0.0]
We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs)
The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function.
We demonstrate the method on a complex cardiac cell model problem using deep neural networks.
arXiv Detail & Related papers (2021-01-04T13:36:06Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.