Object recognition in atmospheric turbulence scenes
- URL: http://arxiv.org/abs/2210.14318v2
- Date: Mon, 29 May 2023 18:55:03 GMT
- Title: Object recognition in atmospheric turbulence scenes
- Authors: Disen Hu and Nantheera Anantrasirichai
- Abstract summary: We propose a novel framework that learns distorted features to detect and classify object types in turbulent environments.
Specifically, we utilise deformable convolutions to handle spatial displacement.
We show that the proposed framework outperforms the benchmark with a mean Average Precision (mAP) score exceeding 30%.
- Score: 2.657505380055164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The influence of atmospheric turbulence on acquired surveillance imagery
poses significant challenges in image interpretation and scene analysis.
Conventional approaches for target classification and tracking are less
effective under such conditions. While deep-learning-based object detection
methods have shown great success in normal conditions, they cannot be directly
applied to atmospheric turbulence sequences. In this paper, we propose a novel
framework that learns distorted features to detect and classify object types in
turbulent environments. Specifically, we utilise deformable convolutions to
handle spatial turbulent displacement. Features are extracted using a feature
pyramid network, and Faster R-CNN is employed as the object detector.
Experimental results on a synthetic VOC dataset demonstrate that the proposed
framework outperforms the benchmark with a mean Average Precision (mAP) score
exceeding 30%. Additionally, subjective results on real data show significant
improvement in performance.
Related papers
- SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
Small object detection in aerial imagery presents significant challenges in computer vision.
Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases.
This paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects.
arXiv Detail & Related papers (2024-05-02T19:47:08Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Enhancing Lidar-based Object Detection in Adverse Weather using Offset
Sequences in Time [1.1725016312484975]
Lidar-based object detection is significantly affected by adverse weather conditions such as rain and fog.
Our research provides a comprehensive study of effective methods for mitigating the effects of adverse weather on the reliability of lidar-based object detection.
arXiv Detail & Related papers (2024-01-17T08:31:58Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
We compare the perceptual abilities of four object-centric approaches: ViMON, OP3, TBA and SCALOR.
Our results suggest that the architectures with unconstrained latent representations learn more powerful representations in terms of object detection, segmentation and tracking.
Our benchmark may provide fruitful guidance towards learning more robust object-centric video representations.
arXiv Detail & Related papers (2020-06-12T09:37:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.