Interpolating Discriminant Functions in High-Dimensional Gaussian Latent
Mixtures
- URL: http://arxiv.org/abs/2210.14347v2
- Date: Wed, 29 Mar 2023 03:04:44 GMT
- Title: Interpolating Discriminant Functions in High-Dimensional Gaussian Latent
Mixtures
- Authors: Xin Bing and Marten Wegkamp
- Abstract summary: This paper considers binary classification of high-dimensional features under a postulated model.
A generalized least squares estimator is used to estimate the direction of the optimal separating hyperplane.
- Score: 1.4213973379473654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers binary classification of high-dimensional features under
a postulated model with a low-dimensional latent Gaussian mixture structure and
non-vanishing noise. A generalized least squares estimator is used to estimate
the direction of the optimal separating hyperplane. The estimated hyperplane is
shown to interpolate on the training data. While the direction vector can be
consistently estimated as could be expected from recent results in linear
regression, a naive plug-in estimate fails to consistently estimate the
intercept. A simple correction, that requires an independent hold-out sample,
renders the procedure minimax optimal in many scenarios. The interpolation
property of the latter procedure can be retained, but surprisingly depends on
the way the labels are encoded.
Related papers
- Quasi-Bayes meets Vines [2.3124143670964448]
We propose a different way to extend Quasi-Bayesian prediction to high dimensions through the use of Sklar's theorem.
We show that our proposed Quasi-Bayesian Vine (QB-Vine) is a fully non-parametric density estimator with emphan analytical form.
arXiv Detail & Related papers (2024-06-18T16:31:02Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
We present an unbiased method for posterior means based on kinetic Langevin dynamics.
Our proposed estimator is unbiased, attains finite variance, and satisfies a central limit theorem.
Our results demonstrate that in large-scale applications, the unbiased algorithm we present can be 2-3 orders of magnitude more efficient than the gold-standard" randomized Hamiltonian Monte Carlo.
arXiv Detail & Related papers (2023-11-08T21:19:52Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Benign overfitting and adaptive nonparametric regression [71.70323672531606]
We construct an estimator which is a continuous function interpolating the data points with high probability.
We attain minimax optimal rates under mean squared risk on the scale of H"older classes adaptively to the unknown smoothness.
arXiv Detail & Related papers (2022-06-27T14:50:14Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.