Discourse-Aware Emotion Cause Extraction in Conversations
- URL: http://arxiv.org/abs/2210.14419v1
- Date: Wed, 26 Oct 2022 02:11:01 GMT
- Title: Discourse-Aware Emotion Cause Extraction in Conversations
- Authors: Dexin Kong, Nan Yu, Yun Yuan, Guohong Fu, Chen Gong
- Abstract summary: Emotion Cause Extraction in Conversations (ECEC) aims to extract the utterances which contain the emotional cause in conversations.
We propose a discourse-aware model (DAM) for this task.
Results on the benchmark corpus show that DAM outperform the state-of-theart (SOTA) systems in the literature.
- Score: 21.05202596080196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion Cause Extraction in Conversations (ECEC) aims to extract the
utterances which contain the emotional cause in conversations. Most prior
research focuses on modelling conversational contexts with sequential encoding,
ignoring the informative interactions between utterances and
conversational-specific features for ECEC. In this paper, we investigate the
importance of discourse structures in handling utterance interactions and
conversationspecific features for ECEC. To this end, we propose a
discourse-aware model (DAM) for this task. Concretely, we jointly model ECEC
with discourse parsing using a multi-task learning (MTL) framework and
explicitly encode discourse structures via gated graph neural network (gated
GNN), integrating rich utterance interaction information to our model. In
addition, we use gated GNN to further enhance our ECEC model with
conversation-specific features. Results on the benchmark corpus show that DAM
outperform the state-of-theart (SOTA) systems in the literature. This suggests
that the discourse structure may contain a potential link between emotional
utterances and their corresponding cause expressions. It also verifies the
effectiveness of conversationalspecific features. The codes of this paper will
be available on GitHub.
Related papers
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - Emphasis Rendering for Conversational Text-to-Speech with Multi-modal Multi-scale Context Modeling [40.32021786228235]
Conversational Text-to-Speech (CTTS) aims to accurately express an utterance with the appropriate style within a conversational setting.
We propose a novel Emphasis Rendering scheme for the CTTS model, termed ER-CTTS.
To address data scarcity, we create emphasis intensity annotations on the existing conversational dataset (DailyTalk)
arXiv Detail & Related papers (2024-10-12T13:02:31Z) - BiosERC: Integrating Biography Speakers Supported by LLMs for ERC Tasks [2.9873893715462176]
This work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation.
By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation.
Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets.
arXiv Detail & Related papers (2024-07-05T06:25:34Z) - ECQED: Emotion-Cause Quadruple Extraction in Dialogs [37.66816413841564]
We present Emotion-Cause Quadruple Extraction in Dialogs (ECQED), which requires detecting emotion-cause utterance pairs and emotion and cause types.
We show that introducing the fine-grained emotion and cause features evidently helps better dialog generation.
arXiv Detail & Related papers (2023-06-06T19:04:30Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
Dialogue Topic (DTS) plays an essential role in a variety of dialogue modeling tasks.
We propose a novel unsupervised DTS framework, which learns topic-aware utterance representations from unlabeled dialogue data.
arXiv Detail & Related papers (2023-05-04T11:35:23Z) - Context-Dependent Embedding Utterance Representations for Emotion
Recognition in Conversations [1.8126187844654875]
We approach Emotion Recognition in Conversations leveraging the conversational context.
We propose context-dependent embedding representations of each utterance.
The effectiveness of our approach is validated on the open-domain DailyDialog dataset and on the task-oriented EmoWOZ dataset.
arXiv Detail & Related papers (2023-04-17T12:37:57Z) - FCTalker: Fine and Coarse Grained Context Modeling for Expressive
Conversational Speech Synthesis [75.74906149219817]
Conversational Text-to-Speech (TTS) aims to synthesis an utterance with the right linguistic and affective prosody in a conversational context.
We propose a novel expressive conversational TTS model, as termed FCTalker, that learn the fine and coarse grained context dependency at the same time during speech generation.
arXiv Detail & Related papers (2022-10-27T12:20:20Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
We conduct unsupervised discovery of dialog structure from chitchat corpora.
We then leverage it to facilitate dialog generation in downstream systems.
We present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure.
arXiv Detail & Related papers (2020-12-31T10:58:37Z) - Structured Attention for Unsupervised Dialogue Structure Induction [110.12561786644122]
We propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion.
Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias.
arXiv Detail & Related papers (2020-09-17T23:07:03Z) - Dialogue Relation Extraction with Document-level Heterogeneous Graph
Attention Networks [21.409522845011907]
Dialogue relation extraction (DRE) aims to detect the relation between two entities mentioned in a multi-party dialogue.
We present a graph attention network-based method for DRE where a graph contains meaningfully connected speaker, entity, entity-type, and utterance nodes.
We empirically show that this graph-based approach quite effectively captures the relations between different entity pairs in a dialogue as it outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-10T18:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.