Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data
- URL: http://arxiv.org/abs/2210.14721v1
- Date: Tue, 25 Oct 2022 17:50:36 GMT
- Title: Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data
- Authors: John So, Amber Xie, Sunggoo Jung, Jeffrey Edlund, Rohan Thakker, Ali
Agha-mohammadi, Pieter Abbeel, Stephen James
- Abstract summary: We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
- Score: 56.49494318285391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving is complex, requiring sophisticated 3D scene
understanding, localization, mapping, and control. Rather than explicitly
modelling and fusing each of these components, we instead consider an
end-to-end approach via reinforcement learning (RL). However, collecting
exploration driving data in the real world is impractical and dangerous. While
training in simulation and deploying visual sim-to-real techniques has worked
well for robot manipulation, deploying beyond controlled workspace viewpoints
remains a challenge. In this paper, we address this challenge by presenting
Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for
off-road autonomous driving, without using any real-world data. This is done by
learning to translate randomized simulation images into simulated segmentation
and depth maps, subsequently enabling real-world images to also be translated.
This allows us to train an end-to-end RL policy in simulation, and directly
deploy in the real-world. Our approach, which can be trained in 48 hours on 1
GPU, can perform equally as well as a classical perception and control stack
that took thousands of engineering hours over several months to build. We hope
this work motivates future end-to-end autonomous driving research.
Related papers
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - Learning autonomous driving from aerial imagery [67.06858775696453]
Photogrammetric simulators allow the synthesis of novel views through the transformation of pre-generated assets into novel views.
We use a Neural Radiance Field (NeRF) as an intermediate representation to synthesize novel views from the point of view of a ground vehicle.
arXiv Detail & Related papers (2024-10-18T05:09:07Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Data generation using simulation technology to improve perception
mechanism of autonomous vehicles [0.0]
We will demonstrate the effectiveness of combining data gathered from the real world with data generated in the simulated world to train perception systems.
We will also propose a multi-level deep learning perception framework that aims to emulate a human learning experience.
arXiv Detail & Related papers (2022-07-01T03:42:33Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
We present an end-to-end trainable machine learning system capable of realistically simulating driving experiences.
This can be used for the verification of self-driving system performance without relying on expensive and time-consuming road testing.
arXiv Detail & Related papers (2021-05-26T05:14:23Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
We present a DRL-based algorithm that is capable of performing autonomous robot control using Deep Q-Networks (DQN)
In our approach, the agent is trained in a simulated environment and it is able to navigate both in a simulated and real-world environment.
The trained agent is able to run on limited hardware resources and its performance is comparable to state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-23T15:23:54Z) - LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World [84.57894492587053]
We develop a novel simulator that captures both the power of physics-based and learning-based simulation.
We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation.
We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.
arXiv Detail & Related papers (2020-06-16T17:44:35Z) - Simulation-based reinforcement learning for real-world autonomous driving [9.773015744446067]
We use reinforcement learning in simulation to obtain a driving system controlling a full-size real-world vehicle.
The driving policy takes RGB images from a single camera and their semantic segmentation as input.
We use mostly synthetic data, with labelled real-world data appearing only in the training of the segmentation network.
arXiv Detail & Related papers (2019-11-29T00:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.