Is Multi-Task Learning an Upper Bound for Continual Learning?
- URL: http://arxiv.org/abs/2210.14797v1
- Date: Wed, 26 Oct 2022 15:45:11 GMT
- Title: Is Multi-Task Learning an Upper Bound for Continual Learning?
- Authors: Zihao Wu, Huy Tran, Hamed Pirsiavash, Soheil Kolouri
- Abstract summary: This paper proposes a novel continual self-supervised learning setting, where each task corresponds to learning an invariant representation for a specific class of data augmentations.
We show that continual learning often beats multi-task learning on various benchmark datasets, including MNIST, CIFAR-10, and CIFAR-100.
- Score: 26.729088618251282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual and multi-task learning are common machine learning approaches to
learning from multiple tasks. The existing works in the literature often assume
multi-task learning as a sensible performance upper bound for various continual
learning algorithms. While this assumption is empirically verified for
different continual learning benchmarks, it is not rigorously justified.
Moreover, it is imaginable that when learning from multiple tasks, a small
subset of these tasks could behave as adversarial tasks reducing the overall
learning performance in a multi-task setting. In contrast, continual learning
approaches can avoid the performance drop caused by such adversarial tasks to
preserve their performance on the rest of the tasks, leading to better
performance than a multi-task learner. This paper proposes a novel continual
self-supervised learning setting, where each task corresponds to learning an
invariant representation for a specific class of data augmentations. In this
setting, we show that continual learning often beats multi-task learning on
various benchmark datasets, including MNIST, CIFAR-10, and CIFAR-100.
Related papers
- Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
Quantifying uncertainty in the estimated tasks is of pivotal importance for many downstream applications, such as online or active learning.
We provide novel multitask confidence intervals in the challenging setting when neither the similarity between tasks nor the tasks' features are available to the learner.
We propose a novel online learning algorithm that achieves such improved regret without knowing this parameter in advance.
arXiv Detail & Related papers (2023-08-03T13:08:09Z) - Saliency-Regularized Deep Multi-Task Learning [7.3810864598379755]
Multitask learning enforces multiple learning tasks to share knowledge to improve their generalization abilities.
Modern deep multitask learning can jointly learn latent features and task sharing, but they are obscure in task relation.
This paper proposes a new multitask learning framework that jointly learns latent features and explicit task relations.
arXiv Detail & Related papers (2022-07-03T20:26:44Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
Multi-Task Learning uses correlated tasks to improve performance generalization.
Tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined.
We propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation.
arXiv Detail & Related papers (2022-04-14T01:52:34Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
Multi-task learning often suffers from negative transfer, sharing information that should be task-specific.
This is done by using proto-policies as modules to divide the tasks into simple sub-behaviours that can be shared.
We also demonstrate its ability to autonomously divide the tasks into both shared and task-specific sub-behaviours.
arXiv Detail & Related papers (2022-03-28T15:53:17Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
The study of multi-task learning has drawn great attention from the community.
Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored.
Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate.
In this paper, we introduce Task Allocation(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks.
For further progress, we propose Interleaved Task Allocation(ISTA) to iteratively allocate all
arXiv Detail & Related papers (2022-03-06T11:57:18Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
We propose a novel semi-supervised algorithm, termed as Multi-Task Multi-View learning based on Common and Special Features (MTMVCSF)
An anti-noise multi-task multi-view algorithm called AN-MTMVCSF is proposed, which has a strong adaptability to noise labels.
The effectiveness of these algorithms is proved by a series of well-designed experiments on both real world and synthetic data.
arXiv Detail & Related papers (2022-01-15T11:26:28Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
A general-purpose robot should be able to master a wide range of tasks and quickly learn a novel one by leveraging past experiences.
One-shot imitation learning (OSIL) approaches this goal by training an agent with (pairs of) expert demonstrations.
We push for a higher level of generalization ability by investigating a more ambitious multi-task setup.
arXiv Detail & Related papers (2021-10-26T05:49:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.