Neuro-symbolic partial differential equation solver
- URL: http://arxiv.org/abs/2210.14907v1
- Date: Tue, 25 Oct 2022 22:56:43 GMT
- Title: Neuro-symbolic partial differential equation solver
- Authors: Pouria Mistani, Samira Pakravan, Rajesh Ilango, Sanjay Choudhry,
Frederic Gibou
- Abstract summary: We present a strategy for developing mesh-free neuro-symbolic partial differential equation solvers from numerical discretizations found in scientific computing.
This strategy is unique in that it can be used to efficiently train neural network surrogate models for the solution functions and the differential operators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a highly scalable strategy for developing mesh-free neuro-symbolic
partial differential equation solvers from existing numerical discretizations
found in scientific computing. This strategy is unique in that it can be used
to efficiently train neural network surrogate models for the solution functions
and the differential operators, while retaining the accuracy and convergence
properties of state-of-the-art numerical solvers. This neural bootstrapping
method is based on minimizing residuals of discretized differential systems on
a set of random collocation points with respect to the trainable parameters of
the neural network, achieving unprecedented resolution and optimal scaling for
solving physical and biological systems.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
An innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations.
It effectively combines deep neural networks (DNNs) with approximation of fractional derivatives.
arXiv Detail & Related papers (2023-10-07T12:43:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
Trained neural networks act as universal function approximators, able to numerically solve differential equations in a novel way.
Variations on traditional loss function and training parameters show promise in making neural network-aided solutions more efficient.
arXiv Detail & Related papers (2022-08-07T17:12:39Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Hierarchical Learning to Solve Partial Differential Equations Using
Physics-Informed Neural Networks [2.0305676256390934]
We propose a hierarchical approach to improve the convergence rate and accuracy of the neural network solution to partial differential equations.
We validate the efficiency and robustness of the proposed hierarchical approach through a suite of linear and nonlinear partial differential equations.
arXiv Detail & Related papers (2021-12-02T13:53:42Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
We generalize the reaction-diffusion equation in statistical physics, Schr"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics.
We take finite difference method to discretize NPDE for finding numerical solution.
Basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated.
arXiv Detail & Related papers (2021-03-10T00:05:46Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.