Making photons indistinguishable by a time lens
- URL: http://arxiv.org/abs/2210.14964v1
- Date: Wed, 26 Oct 2022 18:20:56 GMT
- Title: Making photons indistinguishable by a time lens
- Authors: Shivang Srivastava, Dmitri B. Horoshko, Mikhail I. Kolobov
- Abstract summary: We propose an application of quantum temporal imaging to restore the indistinguishability of the signal and the idler photons.
We demonstrate that inserting a time lens in one arm of the interferometer and choosing properly its magnification factor restores perfect indistinguishability of the signal and the idler photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an application of quantum temporal imaging to restoring the
indistinguishability of the signal and the idler photons produced in the
type-II spontaneous parametric down-conversion with a pulsed broadband pump. It
is known that in this case, the signal and the idler photons have different
spectral and temporal properties. This effect deteriorates their
indistinguishability and, respectively, the visibility of the Hong-Ou-Mandel
interference. We demonstrate that inserting a time lens in one arm of the
interferometer and choosing properly its magnification factor restores perfect
indistinguishability of the signal and the idler photons and provides 100%
visibility of the Hong-Ou-Mandel interference in the limit of high focal group
delay dispersion of the time lens.
Related papers
- Towards a fiber-optic temporally multiplexed single photon source [0.0]
We implement a photon source with sub-Poissonian emission statistics through temporal multiplexing of a continuous wave heralded photon source in the optical communications wavelength range.
We obtain a brightness improvement factor of approximately 1.8 and an enhancement of the signal-to-noise ratio, quantified by the coincidence-to-accidental counts ratio.
arXiv Detail & Related papers (2024-05-13T19:54:55Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Using the Autler-Townes and ac Stark effects to optically tune the
frequency of indistinguishable single-photons from an on-demand source [0.0]
We describe a coherent optical drive that is near-resonant with the upper rungs of a three-level ladder system.
We show how both these negative effects can be mitigated by using an optical cavity to increase the collection rate of the desired photons.
We apply our general theory to semiconductor quantum dots, which have proven to be excellent single-photon sources.
arXiv Detail & Related papers (2022-01-09T14:24:26Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - High-speed imaging of spatiotemporal correlations in Hong-Ou-Mandel
interference [0.0]
We experimentally demonstrate, with the aid of a time tagging camera, high speed measurement and characterization of two-photon interference.
Results open up a route practical applications of using the high dimensionality of spatial DOF in two-photon interference.
arXiv Detail & Related papers (2021-07-06T17:13:41Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z) - Boosting energy-time entanglement using coherent time-delayed feedback [58.720142291102135]
We propose to control the visibility of the interference in the second-order coherence function by implementing a coherent time-delayed feedback mechanism.
We find that the visibility for two photons emitted from a three-level system (3LS) in ladder configuration can be enhanced significantly for a wide range of parameters by slowing down the decay of the upper level of the 3LS.
arXiv Detail & Related papers (2021-03-03T21:12:29Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - A general framework for multimode Gaussian quantum optics and
photo-detection: application to Hong-Ou-Mandel interference with filtered
heralded single photon sources [0.0]
We investigate the combined effects of spectral and photon number impurity on the measured Hong--Ou--Mandel interference visibility of parametric photon sources.
We find that for any degree of spectral impurity, increasing the photon generation rate necessarily decreases the interference visibility.
While tight spectral filtering can be used to enforce spectral purity and increased interference visibility at low powers, we find that the induced photon number impurity results in a decreasing interference visibility and heralding efficiency with pump power.
arXiv Detail & Related papers (2020-12-10T21:40:00Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.