Bayesian Hyperbolic Multidimensional Scaling
- URL: http://arxiv.org/abs/2210.15081v3
- Date: Tue, 15 Aug 2023 11:20:59 GMT
- Title: Bayesian Hyperbolic Multidimensional Scaling
- Authors: Bolun Liu, Shane Lubold, Adrian E. Raftery, Tyler H. McCormick
- Abstract summary: We propose a Bayesian approach to multidimensional scaling when the low-dimensional manifold is hyperbolic.
A case-control likelihood approximation allows for efficient sampling from the posterior distribution in larger data settings.
We evaluate the proposed method against state-of-the-art alternatives using simulations, canonical reference datasets, Indian village network data, and human gene expression data.
- Score: 2.5944208050492183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multidimensional scaling (MDS) is a widely used approach to representing
high-dimensional, dependent data. MDS works by assigning each observation a
location on a low-dimensional geometric manifold, with distance on the manifold
representing similarity. We propose a Bayesian approach to multidimensional
scaling when the low-dimensional manifold is hyperbolic. Using hyperbolic space
facilitates representing tree-like structures common in many settings (e.g.
text or genetic data with hierarchical structure). A Bayesian approach provides
regularization that minimizes the impact of measurement error in the observed
data and assesses uncertainty. We also propose a case-control likelihood
approximation that allows for efficient sampling from the posterior
distribution in larger data settings, reducing computational complexity from
approximately $O(n^2)$ to $O(n)$. We evaluate the proposed method against
state-of-the-art alternatives using simulations, canonical reference datasets,
Indian village network data, and human gene expression data.
Related papers
- Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data.
Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data.
This paper presents hGP-LVMs to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation.
arXiv Detail & Related papers (2024-10-22T05:07:30Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Dimension Reduction and Data Visualization for Fr\'echet Regression [8.713190936209156]
Fr'echet regression model provides a promising framework for regression analysis with metric spacevalued responses.
We introduce a flexible sufficient dimension reduction (SDR) method for Fr'echet regression to achieve two purposes.
arXiv Detail & Related papers (2021-10-01T15:01:32Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
We present new approach to manifold hypothesis checking and underlying manifold dimension estimation.
Our geometrical method is a modification for sparse data of a well-known box-counting algorithm for Minkowski dimension calculation.
Experiments on real datasets show that the suggested approach based on two methods combination is powerful and effective.
arXiv Detail & Related papers (2021-07-08T15:35:54Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
We propose a novel local nonlinear approach named Vec2vec for general purpose dimensionality reduction.
To train the neural network, we build the neighborhood similarity graph of a matrix and define the context of data points.
Experiments of data classification and clustering on eight real datasets show that Vec2vec is better than several classical dimensionality reduction methods in the statistical hypothesis test.
arXiv Detail & Related papers (2021-03-10T23:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.