ViT-CAT: Parallel Vision Transformers with Cross Attention Fusion for
Popularity Prediction in MEC Networks
- URL: http://arxiv.org/abs/2210.15125v1
- Date: Thu, 27 Oct 2022 02:17:47 GMT
- Title: ViT-CAT: Parallel Vision Transformers with Cross Attention Fusion for
Popularity Prediction in MEC Networks
- Authors: Zohreh HajiAkhondi-Meybodi, Arash Mohammadi, Ming Hou, Jamshid Abouei,
Konstantinos N. Plataniotis
- Abstract summary: This paper proposes a novel hybrid caching framework based on the attention mechanism.
The proposed architecture consists of two parallel ViT networks, one for collecting temporal correlation, and the other for capturing dependencies between different contents.
Based on the simulation results, the proposed ViT-CAT architecture outperforms its counterparts across the classification accuracy, complexity, and cache-hit ratio.
- Score: 36.764013561811225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile Edge Caching (MEC) is a revolutionary technology for the Sixth
Generation (6G) of wireless networks with the promise to significantly reduce
users' latency via offering storage capacities at the edge of the network. The
efficiency of the MEC network, however, critically depends on its ability to
dynamically predict/update the storage of caching nodes with the top-K popular
contents. Conventional statistical caching schemes are not robust to the
time-variant nature of the underlying pattern of content requests, resulting in
a surge of interest in using Deep Neural Networks (DNNs) for time-series
popularity prediction in MEC networks. However, existing DNN models within the
context of MEC fail to simultaneously capture both temporal correlations of
historical request patterns and the dependencies between multiple contents.
This necessitates an urgent quest to develop and design a new and innovative
popularity prediction architecture to tackle this critical challenge. The paper
addresses this gap by proposing a novel hybrid caching framework based on the
attention mechanism. Referred to as the parallel Vision Transformers with Cross
Attention (ViT-CAT) Fusion, the proposed architecture consists of two parallel
ViT networks, one for collecting temporal correlation, and the other for
capturing dependencies between different contents. Followed by a Cross
Attention (CA) module as the Fusion Center (FC), the proposed ViT-CAT is
capable of learning the mutual information between temporal and spatial
correlations, as well, resulting in improving the classification accuracy, and
decreasing the model's complexity about 8 times. Based on the simulation
results, the proposed ViT-CAT architecture outperforms its counterparts across
the classification accuracy, complexity, and cache-hit ratio.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - CLSA: Contrastive Learning-based Survival Analysis for Popularity
Prediction in MEC Networks [36.01752474571776]
Mobile Edge Caching (MEC) integrated with Deep Neural Networks (DNNs) is an innovative technology with significant potential for the future generation of wireless networks.
The MEC network's effectiveness heavily relies on its capacity to predict and dynamically update the storage of caching nodes with the most popular contents.
To be effective, a DNN-based popularity prediction model needs to have the ability to understand the historical request patterns of content.
arXiv Detail & Related papers (2023-03-21T15:57:46Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
Information-centric network (ICN) aims to proactively keep limited popular content at the edge of network based on predicted results.
In this paper, we leverage an effective dynamic graph neural network (DGNN) to jointly learn the structural and temporal patterns embedded in the bipartite graph.
We also propose an age of information (AoI) based attention mechanism to extract valuable historical information.
arXiv Detail & Related papers (2022-08-18T02:57:17Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - TEDGE-Caching: Transformer-based Edge Caching Towards 6G Networks [30.160404936777947]
Mobile Edge Caching (MEC) in the 6G networks has been evolved as an efficient solution to meet the phenomenal growth of the global mobile data traffic.
Recent advancements in Deep Neural Networks (DNNs) have drawn much research attention to predict the content popularity in proactive caching schemes.
We propose an edge caching framework incorporated with the attention-based Vision Transformer (ViT) neural network, referred to as the Transformer-based Edge (TEDGE) caching.
arXiv Detail & Related papers (2021-12-01T16:38:18Z) - Semantic Correspondence with Transformers [68.37049687360705]
We propose Cost Aggregation with Transformers (CATs) to find dense correspondences between semantically similar images.
We include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation.
We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.
arXiv Detail & Related papers (2021-06-04T14:39:03Z) - Hybrid Backpropagation Parallel Reservoir Networks [8.944918753413827]
We propose a novel hybrid network, which combines the effectiveness of learning random temporal features of reservoirs with the readout power of a deep neural network with batch normalization.
We demonstrate that our new network outperforms LSTMs and GRUs, including multi-layer "deep" versions of these networks.
We show also that the inclusion of a novel meta-ring structure, which we call HBP-ESN M-Ring, achieves similar performance to one large reservoir while decreasing the memory required by an order of magnitude.
arXiv Detail & Related papers (2020-10-27T21:03:35Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.