Leveraging Computer Vision Application in Visual Arts: A Case Study on
the Use of Residual Neural Network to Classify and Analyze Baroque Paintings
- URL: http://arxiv.org/abs/2210.15300v1
- Date: Thu, 27 Oct 2022 10:15:36 GMT
- Title: Leveraging Computer Vision Application in Visual Arts: A Case Study on
the Use of Residual Neural Network to Classify and Analyze Baroque Paintings
- Authors: Daniel Kvak
- Abstract summary: In this case study, we focus on the classification of a selected painting 'Portrait of the Painter Charles Bruni' by Johann Kupetzky.
We show that the features extracted during residual network training can be useful for image retrieval within search systems in online art collections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing availability of large digitized fine art collections,
automated analysis and classification of paintings is becoming an interesting
area of research. However, due to domain specificity, implicit subjectivity,
and pervasive nuances that vaguely separate art movements, analyzing art using
machine learning techniques poses significant challenges. Residual networks, or
variants thereof, are one the most popular tools for image classification
tasks, which can extract relevant features for well-defined classes. In this
case study, we focus on the classification of a selected painting 'Portrait of
the Painter Charles Bruni' by Johann Kupetzky and the analysis of the
performance of the proposed classifier. We show that the features extracted
during residual network training can be useful for image retrieval within
search systems in online art collections.
Related papers
- GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability.
Previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI.
We introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture.
arXiv Detail & Related papers (2024-08-01T11:52:56Z) - An Image-based Typology for Visualization [23.716718517642878]
We present and discuss the results of a qualitative analysis of visual representations from images.
We derive a typology of 10 visualization types of defined groups.
We provide a dataset of 6,833 tagged images and an online tool that can be used to explore and analyze the large set of labeled images.
arXiv Detail & Related papers (2024-03-07T04:33:42Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - Synergy of Machine and Deep Learning Models for Multi-Painter
Recognition [0.0]
We introduce a new large dataset for painting recognition task including 62 artists achieving good results.
RegNet performs better in exporting features, while SVM makes the best classification of images based on the painter with a performance of up to 85%.
arXiv Detail & Related papers (2023-04-28T11:34:53Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
We introduce Automatic Image Content Extraction framework for machine learning-based search and analysis of large image archives.
The proposed framework can be applied in several domains in humanities and social sciences.
arXiv Detail & Related papers (2022-04-05T12:19:24Z) - Learning Portrait Style Representations [34.59633886057044]
We study style representations learned by neural network architectures incorporating higher level characteristics.
We find variation in learned style features from incorporating triplets annotated by art historians as supervision for style similarity.
We also present the first large-scale dataset of portraits prepared for computational analysis.
arXiv Detail & Related papers (2020-12-08T01:36:45Z) - Insights From A Large-Scale Database of Material Depictions In Paintings [18.2193253052961]
We examine the give-and-take relationship between visual recognition systems and the rich information available in the fine arts.
We find that visual recognition systems designed for natural images can work surprisingly well on paintings.
We show that learning from paintings can be beneficial for neural networks that are intended to be used on natural images.
arXiv Detail & Related papers (2020-11-24T18:42:58Z) - A Data Set and a Convolutional Model for Iconography Classification in
Paintings [3.4138918206057265]
Iconography in art is the discipline that studies the visual content of artworks to determine their motifs and themes.
Applying Computer Vision techniques to the analysis of art images at an unprecedented scale may support iconography research and education.
arXiv Detail & Related papers (2020-10-06T12:40:46Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
It is advantageous to visualize the features considered to be essential for classification.
Existing visualization methods develop high confidence images consisting of both background and foreground features.
In this work, we propose a saliency-driven approach to visualize discriminative features that are considered most important for a given task.
arXiv Detail & Related papers (2020-07-31T06:11:06Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
Image segmentation is a key topic in image processing and computer vision.
There has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models.
arXiv Detail & Related papers (2020-01-15T21:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.