Terminology-aware Medical Dialogue Generation
- URL: http://arxiv.org/abs/2210.15551v1
- Date: Thu, 27 Oct 2022 15:41:46 GMT
- Title: Terminology-aware Medical Dialogue Generation
- Authors: Chen Tang, Hongbo Zhang, Tyler Loakman, Chenghua Lin, Frank Guerin
- Abstract summary: Medical dialogue generation aims to generate responses according to a history of dialogue turns between doctors and patients.
Unlike open-domain dialogue generation, this requires background knowledge specific to the medical domain.
We propose a novel framework to improve medical dialogue generation by considering features centered on domain-specific terminology.
- Score: 23.54754465832362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical dialogue generation aims to generate responses according to a history
of dialogue turns between doctors and patients. Unlike open-domain dialogue
generation, this requires background knowledge specific to the medical domain.
Existing generative frameworks for medical dialogue generation fall short of
incorporating domain-specific knowledge, especially with regard to medical
terminology. In this paper, we propose a novel framework to improve medical
dialogue generation by considering features centered on domain-specific
terminology. We leverage an attention mechanism to incorporate terminologically
centred features, and fill in the semantic gap between medical background
knowledge and common utterances by enforcing language models to learn
terminology representations with an auxiliary terminology recognition task.
Experimental results demonstrate the effectiveness of our approach, in which
our proposed framework outperforms SOTA language models. Additionally, we
provide a new dataset with medical terminology annotations to support the
research on medical dialogue generation. Our dataset and code are available at
https://github.com/tangg555/meddialog.
Related papers
- MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations [23.437292621092823]
We introduce MediTOD, a dataset of doctor-patient dialogues in English for the medical history-taking task.
We devise a questionnaire-based labeling scheme tailored to the medical domain.
Then, medical professionals create the dataset with high-quality comprehensive annotations.
arXiv Detail & Related papers (2024-10-18T06:38:22Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
Conversational AI tools can generate and discuss clinically correct radiology reports for a given medical image.
RaDialog is the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog.
Our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions.
arXiv Detail & Related papers (2023-11-30T16:28:40Z) - Improving Medical Dialogue Generation with Abstract Meaning
Representations [26.97253577302195]
Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients.
Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text.
We introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities.
arXiv Detail & Related papers (2023-09-19T13:31:49Z) - Medical Dialogue Generation via Dual Flow Modeling [9.328694317877169]
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription.
Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information.
In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor's dialogue acts in each turn.
arXiv Detail & Related papers (2023-05-29T14:23:34Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Medical Dialogue Response Generation with Pivotal Information Recalling [27.351688914399013]
We propose a medical response generation model with Pivotal Information Recalling (MedPIR)
MedPIR is built on two components, i.e., knowledge-aware dialogue graph encoder and recall-enhanced generator.
Experimental results on two large-scale medical dialogue datasets show that MedPIR outperforms the strong baselines in BLEU scores and medical entities F1 measure.
arXiv Detail & Related papers (2022-06-17T08:11:10Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
We propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction.
A new large medical dialogue dataset with multi-level fine-grained annotations is introduced.
We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies.
arXiv Detail & Related papers (2022-04-19T16:43:21Z) - Prompt-based Generative Approach towards Multi-Hierarchical Medical
Dialogue State Tracking [5.586690662128686]
The dialogue state tracking (DST) module in the medical dialogue system interprets utterances into a machine-readable structure for downstream tasks.
We first define a multi-hierarchical state structure and then propose a Prompt-based Generative Approach.
Our approach outperforms other DST methods and is rather effective in the scenario with little data.
arXiv Detail & Related papers (2022-03-18T13:28:27Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
We introduce UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process.
By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models.
arXiv Detail & Related papers (2020-10-20T15:56:31Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.