Deepening Neural Networks Implicitly and Locally via Recurrent Attention
Strategy
- URL: http://arxiv.org/abs/2210.15676v1
- Date: Thu, 27 Oct 2022 13:09:02 GMT
- Title: Deepening Neural Networks Implicitly and Locally via Recurrent Attention
Strategy
- Authors: Shanshan Zhong, Wushao Wen, Jinghui Qin, Zhongzhan Huang
- Abstract summary: Recurrent Attention Strategy implicitly increases the depth of neural networks with lightweight attention modules by local parameter sharing.
Experiments on three widely-used benchmark datasets demonstrate that RAS can improve the performance of neural networks at a slight addition of parameter size and computation.
- Score: 6.39424542887036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: More and more empirical and theoretical evidence shows that deepening neural
networks can effectively improve their performance under suitable training
settings. However, deepening the backbone of neural networks will inevitably
and significantly increase computation and parameter size. To mitigate these
problems, we propose a simple-yet-effective Recurrent Attention Strategy (RAS),
which implicitly increases the depth of neural networks with lightweight
attention modules by local parameter sharing. The extensive experiments on
three widely-used benchmark datasets demonstrate that RAS can improve the
performance of neural networks at a slight addition of parameter size and
computation, performing favorably against other existing well-known attention
modules.
Related papers
- CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability [11.076431337488973]
This study proposes a novel hybrid self-supervised depth estimation network, CCDepth, comprising convolutional neural networks (CNNs) and the white-box CRATE network.
This novel network uses CNNs and the CRATE modules to extract local and global information in images, respectively, thereby boosting learning efficiency and reducing model size.
arXiv Detail & Related papers (2024-09-30T04:19:40Z) - Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
We compare deeper neural networks (DeNNs) with a flexible number of layers and wider neural networks (WeNNs) with limited hidden layers.
We find that a higher number of parameters tends to favor WeNNs, while an increased number of sample points and greater regularity in the loss function lean towards the adoption of DeNNs.
arXiv Detail & Related papers (2024-01-31T20:10:10Z) - Exploring the Complexity of Deep Neural Networks through Functional Equivalence [1.3597551064547502]
We present a novel bound on the covering number for deep neural networks, which reveals that the complexity of neural networks can be reduced.
We demonstrate that functional equivalence benefits optimization, as over parameterized networks tend to be easier to train since increasing network width leads to a diminishing volume of the effective parameter space.
arXiv Detail & Related papers (2023-05-19T04:01:27Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks.
We propose a network structure based on previous work to improve network runtime and accuracy.
arXiv Detail & Related papers (2022-10-31T16:13:15Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.