Towards Improving Workers' Safety and Progress Monitoring of
Construction Sites Through Construction Site Understanding
- URL: http://arxiv.org/abs/2210.15760v1
- Date: Thu, 27 Oct 2022 20:33:46 GMT
- Title: Towards Improving Workers' Safety and Progress Monitoring of
Construction Sites Through Construction Site Understanding
- Authors: Mahdi Bonyani, Maryam Soleymani
- Abstract summary: We propose a lightweight Optimized Positioning (OP) module to improve channel relation based on global feature affinity association.
OP-Net is a general deep neural network module that can be plugged into any deep neural network.
A benchmark test using SODA demonstrated that our OP-Net was capable of achieving new state-of-the-art performance in accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: An important component of computer vision research is object detection. In
recent years, there has been tremendous progress in the study of construction
site images. However, there are obvious problems in construction object
detection, including complex backgrounds, varying-sized objects, and poor
imaging quality. In the state-of-the-art approaches, elaborate attention
mechanisms are developed to handle space-time features, but rarely address the
importance of channel-wise feature adjustments. We propose a lightweight
Optimized Positioning (OP) module to improve channel relation based on global
feature affinity association, which can be used to determine the Optimized
weights adaptively for each channel. OP first computes the intermediate
optimized position by comparing each channel with the remaining channels for a
given set of feature maps. A weighted aggregation of all the channels will then
be used to represent each channel. The OP-Net module is a general deep neural
network module that can be plugged into any deep neural network. Algorithms
that utilize deep learning have demonstrated their ability to identify a wide
range of objects from images nearly in real time. Machine intelligence can
potentially benefit the construction industry by automatically analyzing
productivity and monitoring safety using algorithms that are linked to
construction images. The benefits of on-site automatic monitoring are immense
when it comes to hazard prevention. Construction monitoring tasks can also be
automated once construction objects have been correctly recognized. Object
detection task in construction site images is experimented with extensively to
demonstrate its efficacy and effectiveness. A benchmark test using SODA
demonstrated that our OP-Net was capable of achieving new state-of-the-art
performance in accuracy while maintaining a reasonable computational overhead.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
We propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning.
FriendNet aims to deliver both high-quality perception and high detection capacity.
arXiv Detail & Related papers (2024-03-07T12:19:04Z) - Concrete Surface Crack Detection with Convolutional-based Deep Learning
Models [0.0]
Crack detection is pivotal for structural health monitoring and inspection of buildings.
Convolutional neural networks (CNNs) have emerged as a promising framework for crack detection.
We employ fine-tuning techniques on pre-trained deep learning architectures.
arXiv Detail & Related papers (2024-01-13T17:31:12Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - A Framework for Fast Scalable BNN Inference using Googlenet and Transfer
Learning [0.0]
This thesis aims to achieve high accuracy in object detection with good real-time performance.
The binarized neural network has shown high performance in various vision tasks such as image classification, object detection, and semantic segmentation.
Results show that the accuracy of objects detected by the transfer learning method is more when compared to the existing methods.
arXiv Detail & Related papers (2021-01-04T06:16:52Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Fast Video Salient Object Detection via Spatiotemporal Knowledge
Distillation [20.196945571479002]
We present a lightweight network tailored for video salient object detection.
Specifically, we combine a saliency guidance embedding structure and spatial knowledge distillation to refine the spatial features.
In the temporal aspect, we propose a temporal knowledge distillation strategy, which allows the network to learn the robust temporal features.
arXiv Detail & Related papers (2020-10-20T04:48:36Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.