Matching entropy based disparity estimation from light field
- URL: http://arxiv.org/abs/2210.15948v1
- Date: Fri, 28 Oct 2022 07:12:00 GMT
- Title: Matching entropy based disparity estimation from light field
- Authors: Ligen Shi (1), Chang Liu (2), Di He (2), Xing Zhao (1), and Jun Qiu
(2)
- Abstract summary: A matching window satisfying three characteristics: texture richness, disparity consistency and anti-occlusion should be able to prevent mismatches.
We propose matching entropy in the spatial domain of light field to measure the amount of correct information in a matching window.
A two-step process can reduce mismatches and redundant calculations by selecting effective matching windows.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge for matching-based depth estimation is to prevent
mismatches in occlusion and smooth regions. An effective matching window
satisfying three characteristics: texture richness, disparity consistency and
anti-occlusion should be able to prevent mismatches to some extent. According
to these characteristics, we propose matching entropy in the spatial domain of
light field to measure the amount of correct information in a matching window,
which provides the criterion for matching window selection. Based on matching
entropy regularization, we establish an optimization model for depth estimation
with a matching cost fidelity term. To find the optimum, we propose a two-step
adaptive matching algorithm. First, the region type is adaptively determined to
identify occluding, occluded, smooth and textured regions. Then, the matching
entropy criterion is used to adaptively select the size and shape of matching
windows, as well as the visible viewpoints. The two-step process can reduce
mismatches and redundant calculations by selecting effective matching windows.
The experimental results on synthetic and real data show that the proposed
method can effectively improve the accuracy of depth estimation in occlusion
and smooth regions and has strong robustness for different noise levels.
Therefore, high-precision depth estimation from 4D light field data is
achieved.
Related papers
- LGU-SLAM: Learnable Gaussian Uncertainty Matching with Deformable Correlation Sampling for Deep Visual SLAM [11.715999663401591]
Learnable 2D Gaussian uncertainty model is designed to associate matching-frame pairs.
A multi-scale deformable correlation strategy is devised to adaptively fine-tune the sampling of each direction.
Experiments on real-world and synthetic datasets are conducted to validate the effectiveness and superiority of our method.
arXiv Detail & Related papers (2024-10-30T17:20:08Z) - Diff-PCR: Diffusion-Based Correspondence Searching in Doubly Stochastic
Matrix Space for Point Cloud Registration [35.82753072083472]
State-of-the-art methods have employed RAFT-like iterative updates to refine the solution.
We propose a novel approach that exploits the Denoising Diffusion Model to predict a searching for the optimal matching matrix.
Our method offers flexibility by allowing the search to start from any initial matching matrix provided by the online backbone or white noise.
arXiv Detail & Related papers (2023-12-31T09:24:28Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - ICET Online Accuracy Characterization for Geometry-Based Laser Scan
Matching [0.0]
Iterative Closest Ellipsoidal Transform (ICET) is a novel 3D LIDAR scan-matching algorithm.
We show that ICET consistently performs scan matching with sub-centimeter accuracy.
This level of accuracy, combined with the fact that the algorithm is fully interpretable, make it well suited for safety-critical transportation applications.
arXiv Detail & Related papers (2023-06-14T18:21:45Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Composed Image Retrieval with Text Feedback via Multi-grained
Uncertainty Regularization [73.04187954213471]
We introduce a unified learning approach to simultaneously modeling the coarse- and fine-grained retrieval.
The proposed method has achieved +4.03%, +3.38%, and +2.40% Recall@50 accuracy over a strong baseline.
arXiv Detail & Related papers (2022-11-14T14:25:40Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Gleo-Det: Deep Convolution Feature-Guided Detector with Local Entropy
Optimization for Salient Points [5.955667705173262]
We propose to achieve fine constraint based on the requirement of repeatability while coarse constraint with guidance of deep convolution features.
With the guidance of convolution features, we define the cost function from both positive and negative sides.
arXiv Detail & Related papers (2022-04-27T12:40:21Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
This paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO.
Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields.
3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2020-12-15T11:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.