Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers
- URL: http://arxiv.org/abs/2210.16298v1
- Date: Fri, 28 Oct 2022 17:52:10 GMT
- Title: Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers
- Authors: Jieyu Zhao, Xuezhi Wang, Yao Qin, Jilin Chen, Kai-Wei Chang
- Abstract summary: We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
- Score: 66.36045164286854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large pre-trained language models have shown remarkable performance over the
past few years. These models, however, sometimes learn superficial features
from the dataset and cannot generalize to the distributions that are dissimilar
to the training scenario. There have been several approaches proposed to reduce
model's reliance on these bias features which can improve model robustness in
the out-of-distribution setting. However, existing methods usually use a fixed
low-capacity model to deal with various bias features, which ignore the
learnability of those features. In this paper, we analyze a set of existing
bias features and demonstrate there is no single model that works best for all
the cases. We further show that by choosing an appropriate bias model, we can
obtain a better robustness result than baselines with a more sophisticated
model design.
Related papers
- Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model.
Here, the underlying assumption is that the biased model resorts to shortcut features.
We introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts loss function.
arXiv Detail & Related papers (2023-02-06T15:21:41Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.