ImplantFormer: Vision Transformer based Implant Position Regression
Using Dental CBCT Data
- URL: http://arxiv.org/abs/2210.16467v3
- Date: Wed, 7 Jun 2023 07:12:45 GMT
- Title: ImplantFormer: Vision Transformer based Implant Position Regression
Using Dental CBCT Data
- Authors: Xinquan Yang and Xuguang Li and Xuechen Li and Peixi Wu and Linlin
Shen and Yongqiang Deng
- Abstract summary: Implant prosthesis is the most appropriate treatment for dentition defect or dentition loss, which usually involves a surgical guide design process to decide the implant position.
In this paper, a transformer-based Implant Position Regression Network, ImplantFormer, is proposed to automatically predict the implant position based on the oral CBCT data.
We creatively propose to predict the implant position using the 2D axial view of the tooth crown area and fit a centerline of the implant to obtain the actual implant position at the tooth root.
- Score: 27.020346431680355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implant prosthesis is the most appropriate treatment for dentition defect or
dentition loss, which usually involves a surgical guide design process to
decide the implant position. However, such design heavily relies on the
subjective experiences of dentists. In this paper, a transformer-based Implant
Position Regression Network, ImplantFormer, is proposed to automatically
predict the implant position based on the oral CBCT data. We creatively propose
to predict the implant position using the 2D axial view of the tooth crown area
and fit a centerline of the implant to obtain the actual implant position at
the tooth root. Convolutional stem and decoder are designed to coarsely extract
image features before the operation of patch embedding and integrate
multi-level feature maps for robust prediction, respectively. As both
long-range relationship and local features are involved, our approach can
better represent global information and achieves better location performance.
Extensive experiments on a dental implant dataset through five-fold
cross-validation demonstrated that the proposed ImplantFormer achieves superior
performance than existing methods.
Related papers
- Simplify Implant Depth Prediction as Video Grounding: A Texture Perceive Implant Depth Prediction Network [26.68803827522865]
We develop a Texture Perceive Implant Depth Prediction Network (TPNet)
TPNet consists of an implant region detector (IRD) and an implant depth prediction network (IDPNet)
experiments on a large dental implant dataset demonstrated that the proposed TPNet achieves superior performance than the existing methods.
arXiv Detail & Related papers (2024-06-07T03:24:04Z) - A Semi-automatic Cranial Implant Design Tool Based on Rigid ICP Template Alignment and Voxel Space Reconstruction [2.0793077626669327]
cranioplasty is the craft of neurocranial repair using cranial implants.
Despite the improvements made in recent years, the design of a patient-specific implant (PSI) is among the most complex, expensive, and least automated tasks in cranioplasty.
We create a prototype application with a graphical user interface (UI) specifically tailored for semi-automatic implant generation.
A general outline of the proposed implant generation process involves setting an area of interest, aligning the templates, and then creating the implant in voxel space.
arXiv Detail & Related papers (2024-03-19T08:24:05Z) - TCSloT: Text Guided 3D Context and Slope Aware Triple Network for Dental
Implant Position Prediction [27.020346431680355]
In implant prosthesis treatment, the surgical guide of implant is used to ensure accurate implantation.
Deep neural network has been proposed to assist the dentist in locating the implant position.
In this paper, we design a Text Guided 3D Context and Slope Aware Triple Network (TCSloT)
arXiv Detail & Related papers (2023-08-10T05:51:21Z) - Two-Stream Regression Network for Dental Implant Position Prediction [29.864052654136614]
In implant prosthesis treatment, the design of the surgical guide heavily relies on the manual location of the implant position.
Deep learning based methods has started to be applied to address this problem.
The space between teeth are various and some of them might present similar texture characteristic with the actual implant region.
arXiv Detail & Related papers (2023-05-17T08:37:26Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Point Cloud Diffusion Models for Automatic Implant Generation [0.4499833362998487]
We propose a novel approach for implant generation based on a combination of 3D point cloud diffusion models and voxelization networks.
We evaluate our method on the SkullBreak and SkullFix datasets, generating high-quality implants and achieving competitive evaluation scores.
arXiv Detail & Related papers (2023-03-14T16:54:59Z) - Orientation-guided Graph Convolutional Network for Bone Surface
Segmentation [51.51690515362261]
We propose an orientation-guided graph convolutional network to improve connectivity while segmenting the bone surface.
Our approach improves over the state-of-the-art methods by 5.01% in connectivity metric.
arXiv Detail & Related papers (2022-06-16T23:01:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
We propose an Iris U-transformer (IrisUsformer) for accurate and reliable iris segmentation.
For better accuracy, we elaborately design IrisUsformer by adopting position-sensitive operation and re-packaging transformer block.
We show that IrisUsformer achieves better segmentation accuracy using 35% MACs of the SOTA IrisParseNet.
arXiv Detail & Related papers (2021-10-20T01:37:19Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - A Self-Supervised Deep Framework for Reference Bony Shape Estimation in
Orthognathic Surgical Planning [55.30223654196882]
A virtual orthognathic surgical planning involves simulating surgical corrections of jaw deformities on 3D facial bony shape models.
A reference facial bony shape model representing normal anatomies can provide an objective guidance to improve planning accuracy.
We propose a self-supervised deep framework to automatically estimate reference facial bony shape models.
arXiv Detail & Related papers (2021-09-11T05:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.