STGC-GNNs: A GNN-based traffic prediction framework with a
spatial-temporal Granger causality graph
- URL: http://arxiv.org/abs/2210.16789v1
- Date: Sun, 30 Oct 2022 09:33:51 GMT
- Title: STGC-GNNs: A GNN-based traffic prediction framework with a
spatial-temporal Granger causality graph
- Authors: Silu He, Qinyao Luo, Ronghua Du, Ling Zhao, Haifeng Li
- Abstract summary: The key to traffic prediction is to accurately depict the temporal dynamics of traffic flow traveling in a road network.
Existing methods model a local and static spatial dependence, which cannot transmit the global-dynamic traffic information required for long-term prediction.
We propose a new hypothesis: GDTi behaves macroscopically as a transmitting causal relationship (TCR) underlying traffic flow, which remains stable under dynamic changing traffic flow.
- Score: 3.324220648072334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to traffic prediction is to accurately depict the temporal dynamics
of traffic flow traveling in a road network, so it is important to model the
spatial dependence of the road network. The essence of spatial dependence is to
accurately describe how traffic information transmission is affected by other
nodes in the road network, and the GNN-based traffic prediction model, as a
benchmark for traffic prediction, has become the most common method for the
ability to model spatial dependence by transmitting traffic information with
the message passing mechanism. However, existing methods model a local and
static spatial dependence, which cannot transmit the global-dynamic traffic
information (GDTi) required for long-term prediction. The challenge is the
difficulty of detecting the precise transmission of GDTi due to the uncertainty
of individual transport, especially for long-term transmission. In this paper,
we propose a new hypothesis\: GDTi behaves macroscopically as a transmitting
causal relationship (TCR) underlying traffic flow, which remains stable under
dynamic changing traffic flow. We further propose spatial-temporal Granger
causality (STGC) to express TCR, which models global and dynamic spatial
dependence. To model global transmission, we model the causal order and causal
lag of TCRs global transmission by a spatial-temporal alignment algorithm. To
capture dynamic spatial dependence, we approximate the stable TCR underlying
dynamic traffic flow by a Granger causality test. The experimental results on
three backbone models show that using STGC to model the spatial dependence has
better results than the original model for 45 min and 1 h long-term prediction.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENT consists of three parts, namely the Spatio-Temporal Causality Learning (STCL), Causal Graph Generation (CGG), and Speed Fluctuation Pattern Recognition (SFPR) modules.
ICST-DENT can outperform all existing baselines, as evidenced by the higher prediction accuracy, ability to explain causality, and adaptability to different scenarios.
arXiv Detail & Related papers (2024-04-22T03:35:19Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - A Dynamic Temporal Self-attention Graph Convolutional Network for
Traffic Prediction [7.23135508361981]
This paper proposes a temporal self-attention graph convolutional network (DT-SGN) model which considers the adjacent matrix as a trainable attention score matrix.
Experiments demonstrate the superiority of our method over state-of-art model-driven model and data-driven models on real-world traffic datasets.
arXiv Detail & Related papers (2023-02-21T03:51:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
This paper proposes a neural network model that focuses on the globality and locality of traffic networks.
Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data.
arXiv Detail & Related papers (2020-11-30T09:21:43Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.