Evaluation Metrics for Symbolic Knowledge Extracted from Machine
Learning Black Boxes: A Discussion Paper
- URL: http://arxiv.org/abs/2211.00238v1
- Date: Tue, 1 Nov 2022 03:04:25 GMT
- Title: Evaluation Metrics for Symbolic Knowledge Extracted from Machine
Learning Black Boxes: A Discussion Paper
- Authors: Federico Sabbatini and Roberta Calegari
- Abstract summary: How to assess the level of readability of the extracted knowledge quantitatively is still an open issue.
Finding such a metric would be the key, for instance, to enable automatic comparison between a set of different knowledge representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As opaque decision systems are being increasingly adopted in almost any
application field, issues about their lack of transparency and human
readability are a concrete concern for end-users. Amongst existing proposals to
associate human-interpretable knowledge with accurate predictions provided by
opaque models, there are rule extraction techniques, capable of extracting
symbolic knowledge out of an opaque model. However, how to assess the level of
readability of the extracted knowledge quantitatively is still an open issue.
Finding such a metric would be the key, for instance, to enable automatic
comparison between a set of different knowledge representations, paving the way
for the development of parameter autotuning algorithms for knowledge
extractors. In this paper we discuss the need for such a metric as well as the
criticalities of readability assessment and evaluation, taking into account the
most common knowledge representations while highlighting the most puzzling
issues.
Related papers
- SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge [60.76719375410635]
We propose a new benchmark (SOK-Bench) consisting of 44K questions and 10K situations with instance-level annotations depicted in the videos.
The reasoning process is required to understand and apply situated knowledge and general knowledge for problem-solving.
We generate associated question-answer pairs and reasoning processes, finally followed by manual reviews for quality assurance.
arXiv Detail & Related papers (2024-05-15T21:55:31Z) - A Survey of Explainable Knowledge Tracing [14.472784840283099]
This paper thoroughly analyzes the interpretability of KT algorithms.
Current evaluation methods for explainable knowledge tracing are lacking.
This paper offers some insights into evaluation methods from the perspective of educational stakeholders.
arXiv Detail & Related papers (2024-03-12T03:17:59Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
This paper presents a unified end-to-end retriever-reader framework towards knowledge-based VQA.
We shed light on the multi-modal implicit knowledge from vision-language pre-training models to mine its potential in knowledge reasoning.
Our scheme is able to not only provide guidance for knowledge retrieval, but also drop these instances potentially error-prone towards question answering.
arXiv Detail & Related papers (2022-06-30T02:35:04Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z) - Uncertainty Quantification of Surrogate Explanations: an Ordinal
Consensus Approach [1.3750624267664155]
We produce estimates of the uncertainty of a given explanation by measuring the consensus amongst a set of diverse bootstrapped surrogate explainers.
We empirically illustrate the properties of this approach through experiments on state-of-the-art Convolutional Neural Network ensembles.
arXiv Detail & Related papers (2021-11-17T13:55:58Z) - On the Objective Evaluation of Post Hoc Explainers [10.981508361941335]
Modern trends in machine learning research have led to algorithms that are increasingly intricate to the degree that they are considered to be black boxes.
In an effort to reduce the opacity of decisions, methods have been proposed to construe the inner workings of such models in a human-comprehensible manner.
We propose a framework for the evaluation of post hoc explainers on ground truth that is directly derived from the additive structure of a model.
arXiv Detail & Related papers (2021-06-15T19:06:51Z) - Reasoning over Vision and Language: Exploring the Benefits of
Supplemental Knowledge [59.87823082513752]
This paper investigates the injection of knowledge from general-purpose knowledge bases (KBs) into vision-and-language transformers.
We empirically study the relevance of various KBs to multiple tasks and benchmarks.
The technique is model-agnostic and can expand the applicability of any vision-and-language transformer with minimal computational overhead.
arXiv Detail & Related papers (2021-01-15T08:37:55Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
One of the most challenging question types in VQA is when answering the question requires outside knowledge not present in the image.
In this work we study open-domain knowledge, the setting when the knowledge required to answer a question is not given/annotated, neither at training nor test time.
We tap into two types of knowledge representations and reasoning. First, implicit knowledge which can be learned effectively from unsupervised language pre-training and supervised training data with transformer-based models.
arXiv Detail & Related papers (2020-12-20T20:13:02Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.