MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic
Model
- URL: http://arxiv.org/abs/2211.00611v1
- Date: Tue, 1 Nov 2022 17:24:44 GMT
- Title: MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic
Model
- Authors: Junde Wu, Huihui Fang, Yu Zhang, Yehui Yang, Yanwu Xu
- Abstract summary: Diffusion model (DPM) recently becomes one of the hottest topic in computer vision.
We propose the first DPM based model toward general medical image segmentation tasks, which we named MedSegDiff.
experimental results show that MedSegDiff outperforms state-of-the-art (SOTA) methods with considerable performance gap.
- Score: 8.910108260704964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion probabilistic model (DPM) recently becomes one of the hottest topic
in computer vision. Its image generation application such as Imagen, Latent
Diffusion Models and Stable Diffusion have shown impressive generation
capabilities, which aroused extensive discussion in the community. Many recent
studies also found it useful in many other vision tasks, like image deblurring,
super-resolution and anomaly detection. Inspired by the success of DPM, we
propose the first DPM based model toward general medical image segmentation
tasks, which we named MedSegDiff. In order to enhance the step-wise regional
attention in DPM for the medical image segmentation, we propose dynamic
conditional encoding, which establishes the state-adaptive conditions for each
sampling step. We further propose Feature Frequency Parser (FF-Parser), to
eliminate the negative effect of high-frequency noise component in this
process. We verify MedSegDiff on three medical segmentation tasks with
different image modalities, which are optic cup segmentation over fundus
images, brain tumor segmentation over MRI images and thyroid nodule
segmentation over ultrasound images. The experimental results show that
MedSegDiff outperforms state-of-the-art (SOTA) methods with considerable
performance gap, indicating the generalization and effectiveness of the
proposed model.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Denoising Diffusions in Latent Space for Medical Image Segmentation [14.545920180010201]
Diffusion models (DPMs) have demonstrated remarkable performance in image generation, often times outperforming other generative models.
We propose a novel conditional generative modeling framework (LDSeg) that performs diffusion in latent space for medical image segmentation.
arXiv Detail & Related papers (2024-07-17T18:44:38Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.