Semantic Pivoting Model for Effective Event Detection
- URL: http://arxiv.org/abs/2211.00709v1
- Date: Tue, 1 Nov 2022 19:20:34 GMT
- Title: Semantic Pivoting Model for Effective Event Detection
- Authors: Anran Hao, Siu Cheung Hui, Jian Su
- Abstract summary: Event Detection aims to identify and classify mentions of event instances from unstructured articles.
Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task.
We propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events.
- Score: 19.205550116466604
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Event Detection, which aims to identify and classify mentions of event
instances from unstructured articles, is an important task in Natural Language
Processing (NLP). Existing techniques for event detection only use homogeneous
one-hot vectors to represent the event type classes, ignoring the fact that the
semantic meaning of the types is important to the task. Such an approach is
inefficient and prone to overfitting. In this paper, we propose a Semantic
Pivoting Model for Effective Event Detection (SPEED), which explicitly
incorporates prior information during training and captures semantically
meaningful correlations between input and events. Experimental results show
that our proposed model achieves state-of-the-art performance and outperforms
the baselines in multiple settings without using any external resources.
Related papers
- Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types.
We aim to improve zero-shot event detection by training models to better follow event definitions.
arXiv Detail & Related papers (2024-03-05T01:46:50Z) - Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning [45.3385722995475]
We propose MetaEvent, a meta learning-based framework for zero- and few-shot event detection.
In our framework, we propose to use the cloze-based prompt and a trigger-aware softr to efficiently project output to unseen event types.
As such, the proposed MetaEvent can perform zero-shot event detection by mapping features to event types without any prior knowledge.
arXiv Detail & Related papers (2023-05-27T05:36:46Z) - Unifying Event Detection and Captioning as Sequence Generation via
Pre-Training [53.613265415703815]
We propose a unified pre-training and fine-tuning framework to enhance the inter-task association between event detection and captioning.
Our model outperforms the state-of-the-art methods, and can be further boosted when pre-trained on extra large-scale video-text data.
arXiv Detail & Related papers (2022-07-18T14:18:13Z) - PILED: An Identify-and-Localize Framework for Few-Shot Event Detection [79.66042333016478]
In our study, we employ cloze prompts to elicit event-related knowledge from pretrained language models.
We minimize the number of type-specific parameters, enabling our model to quickly adapt to event detection tasks for new types.
arXiv Detail & Related papers (2022-02-15T18:01:39Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - Unsupervised Label-aware Event Trigger and Argument Classification [73.86358632937372]
We propose an unsupervised event extraction pipeline, which first identifies events with available tools (e.g., SRL) and then automatically maps them to pre-defined event types.
We leverage pre-trained language models to contextually represent pre-defined types for both event triggers and arguments.
We successfully map 83% of the triggers and 54% of the arguments to the correct types, almost doubling the performance of previous zero-shot approaches.
arXiv Detail & Related papers (2020-12-30T17:47:24Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
We propose an end-to-end model leveraging Deep Value Networks (DVN), a structured prediction algorithm, to efficiently capture cross-event dependencies for document-level event extraction.
Our approach achieves comparable performance to CRF-based models on ACE05, while enjoys significantly higher computational efficiency.
arXiv Detail & Related papers (2020-10-24T05:28:16Z) - Probing and Fine-tuning Reading Comprehension Models for Few-shot Event
Extraction [17.548548562222766]
We propose a reading comprehension framework for event extraction.
By constructing proper query templates, our approach can effectively distill rich knowledge about tasks and label semantics.
Our method achieves state-of-the-art performance on the ACE 2005 benchmark when trained with full supervision.
arXiv Detail & Related papers (2020-10-21T21:48:39Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
This paper introduces the Ongoing Event Detection (OED) task.
The goal is to detect ongoing event mentions only, as opposed to historical, future, hypothetical, or other forms or events that are neither fresh nor current.
Any application that needs to extract structured information about ongoing events from unstructured texts can take advantage of an OED system.
arXiv Detail & Related papers (2020-07-02T20:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.