DEArt: Dataset of European Art
- URL: http://arxiv.org/abs/2211.01226v2
- Date: Thu, 3 Nov 2022 07:33:46 GMT
- Title: DEArt: Dataset of European Art
- Authors: Artem Reshetnikov, Maria-Cristina Marinescu, Joaquim More Lopez
- Abstract summary: We propose DEArt, an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries.
It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects.
Our results show that object detectors for the cultural heritage domain can achieve a level of precision comparable to state-of-art models for generic images via transfer learning.
- Score: 0.17188280334580194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large datasets that were made publicly available to the research community
over the last 20 years have been a key enabling factor for the advances in deep
learning algorithms for NLP or computer vision. These datasets are generally
pairs of aligned image / manually annotated metadata, where images are
photographs of everyday life. Scholarly and historical content, on the other
hand, treat subjects that are not necessarily popular to a general audience,
they may not always contain a large number of data points, and new data may be
difficult or impossible to collect. Some exceptions do exist, for instance,
scientific or health data, but this is not the case for cultural heritage (CH).
The poor performance of the best models in computer vision - when tested over
artworks - coupled with the lack of extensively annotated datasets for CH, and
the fact that artwork images depict objects and actions not captured by
photographs, indicate that a CH-specific dataset would be highly valuable for
this community. We propose DEArt, at this point primarily an object detection
and pose classification dataset meant to be a reference for paintings between
the XIIth and the XVIIIth centuries. It contains more than 15000 images, about
80% non-iconic, aligned with manual annotations for the bounding boxes
identifying all instances of 69 classes as well as 12 possible poses for boxes
identifying human-like objects. Of these, more than 50 classes are CH-specific
and thus do not appear in other datasets; these reflect imaginary beings,
symbolic entities and other categories related to art. Additionally, existing
datasets do not include pose annotations. Our results show that object
detectors for the cultural heritage domain can achieve a level of precision
comparable to state-of-art models for generic images via transfer learning.
Related papers
- Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method [64.40494830113286]
We first introduce a large-scale AIAA dataset: Boldbrush Artistic Image dataset (BAID), which consists of 60,337 artistic images covering various art forms.
We then propose a new method, SAAN, which can effectively extract and utilize style-specific and generic aesthetic information to evaluate artistic images.
Experiments demonstrate that our proposed approach outperforms existing IAA methods on the proposed BAID dataset.
arXiv Detail & Related papers (2023-03-27T12:59:15Z) - Poses of People in Art: A Data Set for Human Pose Estimation in Digital
Art History [0.6345523830122167]
We introduce the first openly licensed data set for estimating human poses in art.
The Poses of People in Art data set consists of 2,454 images from 22 art-historical depiction styles.
A total of 10,749 human figures are precisely enclosed by rectangular bounding boxes, with a maximum of four per image labeled by up to 17 keypoints.
arXiv Detail & Related papers (2023-01-12T16:23:58Z) - Bugs in the Data: How ImageNet Misrepresents Biodiversity [98.98950914663813]
We analyze the 13,450 images from 269 classes that represent wild animals in the ImageNet-1k validation set.
We find that many of the classes are ill-defined or overlapping, and that 12% of the images are incorrectly labeled.
We also find that both the wildlife-related labels and images included in ImageNet-1k present significant geographical and cultural biases.
arXiv Detail & Related papers (2022-08-24T17:55:48Z) - Is Medieval Distant Viewing Possible? : Extending and Enriching Annotation of Legacy Image Collections using Visual Analytics [3.89394670917253]
We describe working with two pre-annotated sets of medieval manuscript images that exhibit conflicting and overlapping metadata.
We aim to create a more uniform set of labels to serve as a "bridge" in the combined dataset.
Visual interfaces provide experts an overview of relationships in the data going beyond the sum total of the metadata.
arXiv Detail & Related papers (2022-08-20T10:59:33Z) - VizWiz-FewShot: Locating Objects in Images Taken by People With Visual
Impairments [74.72656607288185]
We introduce a few-shot localization dataset originating from photographers who authentically were trying to learn about the visual content in the images they took.
It includes nearly 10,000 segmentations of 100 categories in over 4,500 images that were taken by people with visual impairments.
Compared to existing few-shot object detection and instance segmentation datasets, our dataset is the first to locate holes in objects.
arXiv Detail & Related papers (2022-07-24T20:44:51Z) - ImageSubject: A Large-scale Dataset for Subject Detection [9.430492045581534]
Main subjects usually exist in the images or videos, as they are the objects that the photographer wants to highlight.
Detecting the main subjects is an important technique to help machines understand the content of images and videos.
We present a new dataset with the goal of training models to understand the layout of the objects then to find the main subjects among them.
arXiv Detail & Related papers (2022-01-09T22:49:59Z) - Generalized Category Discovery [148.32255950504182]
We consider a highly general image recognition setting wherein, given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set.
Here, the unlabelled images may come from labelled classes or from novel ones.
We first establish strong baselines by taking state-of-the-art algorithms from novel category discovery and adapting them for this task.
We then introduce a simple yet effective semi-supervised $k$-means method to cluster the unlabelled data into seen and unseen classes.
arXiv Detail & Related papers (2022-01-07T18:58:35Z) - CPPE-5: Medical Personal Protective Equipment Dataset [0.0]
This dataset includes 5 object categories (coveralls, face shield, gloves, mask, and goggles) and each image is annotated with a set of bounding boxes and positive labels.
To make it easy for models trained on this dataset to be used in practical scenarios in complex scenes, our dataset mainly contains images that show complex scenes with several objects in each scene in their natural context.
arXiv Detail & Related papers (2021-12-15T18:45:55Z) - Learning to Detect Every Thing in an Open World [139.78830329914135]
We propose a simple yet surprisingly powerful data augmentation and training scheme we call Learning to Detect Every Thing (LDET)
To avoid suppressing hidden objects, background objects that are visible but unlabeled, we paste annotated objects on a background image sampled from a small region of the original image.
LDET leads to significant improvements on many datasets in the open world instance segmentation task.
arXiv Detail & Related papers (2021-12-03T03:56:06Z) - cofga: A Dataset for Fine Grained Classification of Objects from Aerial
Imagery [2.169919643934826]
We introduce COFGA, a new open dataset for the advancement of fine-grained classification research.
The 2,104 images in the dataset are collected from an airborne imaging system at 5 15 cm ground sampling distance.
The 14,256 annotated objects in the dataset were classified into 2 classes, 15 subclasses, 14 unique features, and 8 perceived colors.
arXiv Detail & Related papers (2021-05-26T18:39:47Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.