nerf2nerf: Pairwise Registration of Neural Radiance Fields
- URL: http://arxiv.org/abs/2211.01600v1
- Date: Thu, 3 Nov 2022 06:04:59 GMT
- Title: nerf2nerf: Pairwise Registration of Neural Radiance Fields
- Authors: Lily Goli, Daniel Rebain, Sara Sabour, Animesh Garg, Andrea
Tagliasacchi
- Abstract summary: We introduce a technique for pairwise registration of neural fields that extends classical optimization-based local registration.
We introduce the concept of a ''surface field'' -- a field distilled from a pre-trained NeRF model.
We evaluate the effectiveness of our technique by introducing a dataset of pre-trained NeRF scenes.
- Score: 38.13011152344739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a technique for pairwise registration of neural fields that
extends classical optimization-based local registration (i.e. ICP) to operate
on Neural Radiance Fields (NeRF) -- neural 3D scene representations trained
from collections of calibrated images. NeRF does not decompose illumination and
color, so to make registration invariant to illumination, we introduce the
concept of a ''surface field'' -- a field distilled from a pre-trained NeRF
model that measures the likelihood of a point being on the surface of an
object. We then cast nerf2nerf registration as a robust optimization that
iteratively seeks a rigid transformation that aligns the surface fields of the
two scenes. We evaluate the effectiveness of our technique by introducing a
dataset of pre-trained NeRF scenes -- our synthetic scenes enable quantitative
evaluations and comparisons to classical registration techniques, while our
real scenes demonstrate the validity of our technique in real-world scenarios.
Additional results available at: https://nerf2nerf.github.io
Related papers
- Reg-NF: Efficient Registration of Implicit Surfaces within Neural Fields [6.949522577812908]
We present Reg-NF, a neural fields-based registration that optimises for the relative 6-DoF transformation between two arbitrary neural fields.
Key components of Reg-NF include a bidirectional registration loss, multi-view surface sampling, and utilisation of volumetric signed distance functions.
arXiv Detail & Related papers (2024-02-15T05:31:03Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.