Image-based Early Detection System for Wildfires
- URL: http://arxiv.org/abs/2211.01629v1
- Date: Thu, 3 Nov 2022 07:38:30 GMT
- Title: Image-based Early Detection System for Wildfires
- Authors: Omkar Ranadive, Jisu Kim, Serin Lee, Youngseo Cha, Heechan Park,
Minkook Cho, Young K. Hwang
- Abstract summary: Wildfires are a disastrous phenomenon which cause damage to land, loss of property, air pollution, and even loss of human life.
We present our Wildfire Detection and Alert System which use machine learning to detect wildfire smoke with a high degree of accuracy.
Our technology is currently being used in the USA to monitor data coming in from hundreds of cameras daily.
- Score: 2.8494271563126676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wildfires are a disastrous phenomenon which cause damage to land, loss of
property, air pollution, and even loss of human life. Due to the warmer and
drier conditions created by climate change, more severe and uncontrollable
wildfires are expected to occur in the coming years. This could lead to a
global wildfire crisis and have dire consequences on our planet. Hence, it has
become imperative to use technology to help prevent the spread of wildfires.
One way to prevent the spread of wildfires before they become too large is to
perform early detection i.e, detecting the smoke before the actual fire starts.
In this paper, we present our Wildfire Detection and Alert System which use
machine learning to detect wildfire smoke with a high degree of accuracy and
can send immediate alerts to users. Our technology is currently being used in
the USA to monitor data coming in from hundreds of cameras daily. We show that
our system has a high true detection rate and a low false detection rate. Our
performance evaluation study also shows that on an average our system detects
wildfire smoke faster than an actual person.
Related papers
- A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - AI-based Wildfire Prevention, Detection and Suppression System [0.0]
Wildfire Prevention, Detection and Suppression System (WPDSS) is a novel, fully automated, end to end, AI based solution to effectively predict hotspots and detect wildfires.
WPDSS will reduce the impacts of climate change, protect ecosystems and biodiversity, avert huge economic losses, and save human lives.
The power of WPDSS developed can be applied to any location globally to prevent and suppress wildfires, reducing climate change.
arXiv Detail & Related papers (2023-12-12T05:18:23Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the U.S.
We present our work on integrating multiple data sources in SmokeyNet, a deep learning model usingtemporal information to detect smoke from wildland fires.
With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
arXiv Detail & Related papers (2022-12-29T01:16:06Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time
Wildland Fire Smoke Detection [0.0]
Fire Ignition Library (FIgLib) is a publicly-available dataset of nearly 25,000 labeled wildfire smoke images.
SmokeyNet is a novel deep learning architecture usingtemporal information from camera imagery for real-time wildfire smoke detection.
When trained on the FIgLib dataset, SmokeyNet outperforms comparable baselines and rivals human performance.
arXiv Detail & Related papers (2021-12-16T03:49:58Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
Wildfires are uncontrolled fires in the environment that can be caused by humans or nature.
In 2020 alone, wildfires in California have burned 4.2 million acres, damaged 10,500 buildings or structures, and killed more than 31 people.
The objective of the research is to detect forest fires in their earlier stages to prevent them from spreading.
arXiv Detail & Related papers (2021-09-10T19:30:37Z) - RtFPS: An Interactive Map that Visualizes and Predicts Wildfires in the
US [5.463582453213332]
RtFPS provides a real-time prediction visualization of wildfire risk at specific locations.
It also provides interactive map features that show the historical wildfire events with environmental info.
arXiv Detail & Related papers (2021-05-23T08:07:01Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - STCNet: Spatio-Temporal Cross Network for Industrial Smoke Detection [52.648906951532155]
We propose a novel Spatio-Temporal Cross Network (STCNet) to recognize industrial smoke emissions.
The proposed STCNet involves a spatial to extract texture features and a temporal pathway to capture smoke motion information.
We show that our STCNet achieves clear improvements on the challenging RISE industrial smoke detection dataset against the best competitors by 6.2%.
arXiv Detail & Related papers (2020-11-10T02:28:47Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.