Log-density gradient covariance and automatic metric tensors for Riemann
manifold Monte Carlo methods
- URL: http://arxiv.org/abs/2211.01746v2
- Date: Thu, 19 Oct 2023 07:21:18 GMT
- Title: Log-density gradient covariance and automatic metric tensors for Riemann
manifold Monte Carlo methods
- Authors: Tore Selland Kleppe
- Abstract summary: The metric tensor is built from symmetric positive semidefinite log-density covariance gradient matrices.
The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A metric tensor for Riemann manifold Monte Carlo particularly suited for
non-linear Bayesian hierarchical models is proposed. The metric tensor is built
from symmetric positive semidefinite log-density gradient covariance (LGC)
matrices, which are also proposed and further explored here. The LGCs
generalize the Fisher information matrix by measuring the joint information
content and dependence structure of both a random variable and the parameters
of said variable. Consequently, positive definite Fisher/LGC-based metric
tensors may be constructed not only from the observation likelihoods as is
current practice, but also from arbitrarily complicated non-linear prior/latent
variable structures, provided the LGC may be derived for each conditional
distribution used to construct said structures. The proposed methodology is
highly automatic and allows for exploitation of any sparsity associated with
the model in question. When implemented in conjunction with a Riemann manifold
variant of the recently proposed numerical generalized randomized Hamiltonian
Monte Carlo processes, the proposed methodology is highly competitive, in
particular for the more challenging target distributions associated with
Bayesian hierarchical models.
Related papers
- Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations.
arXiv Detail & Related papers (2024-07-15T07:11:44Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - Monte Carlo inference for semiparametric Bayesian regression [5.488491124945426]
This paper introduces a simple, general, and efficient strategy for joint posterior inference of an unknown transformation and all regression model parameters.
It delivers (1) joint posterior consistency under general conditions, including multiple model misspecifications, and (2) efficient Monte Carlo (not Markov chain Monte Carlo) inference for the transformation and all parameters for important special cases.
arXiv Detail & Related papers (2023-06-08T18:42:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
We derive a basis function approximation scheme for mixed-domain covariance functions.
We show that we can approximate the exact GP model accurately in a fraction of the runtime.
We also demonstrate a scalable model reduction workflow for obtaining smaller and more interpretable models.
arXiv Detail & Related papers (2021-11-03T04:47:37Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics.
We introduce an approach to "deform" Monte Carlo estimators based on contour deformations applied to the domain of the path integral.
We demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications.
arXiv Detail & Related papers (2021-06-03T16:37:05Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Geometric variational inference [0.0]
Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques are used to go beyond point estimates.
This work proposes geometric Variational Inference (geoVI), a method based on Riemannian geometry and the Fisher information metric.
The distribution, expressed in the coordinate system induced by the transformation, takes a particularly simple form that allows for an accurate variational approximation.
arXiv Detail & Related papers (2021-05-21T17:18:50Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.