A Comparison of SVM against Pre-trained Language Models (PLMs) for Text
Classification Tasks
- URL: http://arxiv.org/abs/2211.02563v1
- Date: Fri, 4 Nov 2022 16:28:40 GMT
- Title: A Comparison of SVM against Pre-trained Language Models (PLMs) for Text
Classification Tasks
- Authors: Yasmen Wahba, Nazim Madhavji, John Steinbacher
- Abstract summary: For domain-specific corpora, fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement.
We compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words.
- Score: 1.2934180951771599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of pre-trained language models (PLMs) has shown great success
in many Natural Language Processing (NLP) tasks including text classification.
Due to the minimal to no feature engineering required when using these models,
PLMs are becoming the de facto choice for any NLP task. However, for
domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a
pre-trained model for a specific task has shown to provide a performance
improvement. In this paper, we compare the performance of four different PLMs
on three public domain-free datasets and a real-world dataset containing
domain-specific words, against a simple SVM linear classifier with TFIDF
vectorized text. The experimental results on the four datasets show that using
PLMs, even fine-tuned, do not provide significant gain over the linear SVM
classifier. Hence, we recommend that for text classification tasks, traditional
SVM along with careful feature engineering can pro-vide a cheaper and superior
performance than PLMs.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
This paper presents a novel hybrid approach that synergizes unsupervised and supervised learning to improve the accuracy of NLP task modeling.
Our methodology integrates an unsupervised module that learns representations from unlabeled corpora and a supervised module that leverages these representations to enhance task-specific models.
By synergizing techniques, our hybrid approach achieves SOTA results on benchmark datasets, paving the way for more data-efficient and robust NLP systems.
arXiv Detail & Related papers (2024-06-03T08:31:35Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
This paper introduces an adaptable and reliable text classification paradigm, which leverages Large Language Models (LLMs)
We evaluated the performance of several LLMs, machine learning algorithms, and neural network-based architectures on four diverse datasets.
It is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies.
arXiv Detail & Related papers (2024-05-17T04:05:05Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Attention is Not Always What You Need: Towards Efficient Classification
of Domain-Specific Text [1.1508304497344637]
For large-scale IT corpora with hundreds of classes organized in a hierarchy, the task of accurate classification of classes at the higher level in the hierarchies is crucial.
In the business world, an efficient and explainable ML model is preferred over an expensive black-box model, especially if the performance increase is marginal.
Despite the widespread use of PLMs, there is a lack of a clear and well-justified need to as why these models are being employed for domain-specific text classification.
arXiv Detail & Related papers (2023-03-31T03:17:23Z) - Pre-trained Language Models for Keyphrase Generation: A Thorough
Empirical Study [76.52997424694767]
We present an in-depth empirical study of keyphrase extraction and keyphrase generation using pre-trained language models.
We show that PLMs have competitive high-resource performance and state-of-the-art low-resource performance.
Further results show that in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models.
arXiv Detail & Related papers (2022-12-20T13:20:21Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
We introduce a novel framework to improve the fine-tuning phase of pre-trained language models (PLMs)
We retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to a task.
We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features.
arXiv Detail & Related papers (2021-02-07T09:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.