A Meta-GNN approach to personalized seizure detection and classification
- URL: http://arxiv.org/abs/2211.02642v2
- Date: Mon, 20 Mar 2023 16:08:30 GMT
- Title: A Meta-GNN approach to personalized seizure detection and classification
- Authors: Abdellah Rahmani, Arun Venkitaraman, Pascal Frossard
- Abstract summary: We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
- Score: 53.906130332172324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a personalized seizure detection and classification
framework that quickly adapts to a specific patient from limited seizure
samples. We achieve this by combining two novel paradigms that have recently
seen much success in a wide variety of real-world applications: graph neural
networks (GNN), and meta-learning. We train a Meta-GNN based classifier that
learns a global model from a set of training patients such that this global
model can eventually be adapted to a new unseen patient using very limited
samples. We apply our approach on the TUSZ-dataset, one of the largest and
publicly available benchmark datasets for epilepsy. We show that our method
outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score
after only 20 iterations on new unseen patients.
Related papers
- An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
This study is conducted with one of the largest WSI colorectal samples dataset with approximately 10,500 WSIs.
Our proposed method predicts, for the patch-based tiles, a class based on the severity of the dysplasia.
It is trained with an interpretable mixed-supervision scheme to leverage the domain knowledge introduced by pathologists.
arXiv Detail & Related papers (2023-01-06T17:10:32Z) - Ensemble Machine Learning Model Trained on a New Synthesized Dataset
Generalizes Well for Stress Prediction Using Wearable Devices [3.006016887654771]
We investigate the generalization ability of models built on datasets containing a small number of subjects, recorded in single study protocols.
We propose and evaluate the use of ensemble techniques by combining gradient boosting with an artificial neural network to measure predictive power on new, unseen data.
arXiv Detail & Related papers (2022-09-30T00:20:57Z) - IOP-FL: Inside-Outside Personalization for Federated Medical Image
Segmentation [18.65229252289727]
Federated learning allows multiple medical institutions to collaboratively learn a global model without centralizing client data.
We propose a novel unified framework for both textitInside and Outside model Personalization in FL (IOP-FL)
Our experimental results on two medical image segmentation tasks present significant improvements over SOTA methods on both inside and outside personalization.
arXiv Detail & Related papers (2022-04-16T08:26:19Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage.
Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space.
Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space.
arXiv Detail & Related papers (2021-06-10T17:26:35Z) - Few-shot segmentation of medical images based on meta-learning with
implicit gradients [0.48861336570452174]
We propose to exploit an optimization-based implicit model agnostic meta-learning iMAML algorithm in a few-shot setting for medical image segmentation.
Our approach can leverage the learned weights from a diverse set of training samples and can be deployed on a new unseen dataset.
arXiv Detail & Related papers (2021-06-06T19:52:06Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.