A Robust and Low Complexity Deep Learning Model for Remote Sensing Image
Classification
- URL: http://arxiv.org/abs/2211.02820v1
- Date: Sat, 5 Nov 2022 06:14:30 GMT
- Title: A Robust and Low Complexity Deep Learning Model for Remote Sensing Image
Classification
- Authors: Cam Le, Lam Pham, Nghia NVN, Truong Nguyen, Le Hong Trang
- Abstract summary: We present a robust and low complexity deep learning model for Remote Sensing Image Classification (RSIC)
By conducting extensive experiments on the benchmark datasets NWPU-RESISC45, we achieve a robust and low-complexity model.
- Score: 1.9019295680940274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a robust and low complexity deep learning model for
Remote Sensing Image Classification (RSIC), the task of identifying the scene
of a remote sensing image. In particular, we firstly evaluate different low
complexity and benchmark deep neural networks: MobileNetV1, MobileNetV2,
NASNetMobile, and EfficientNetB0, which present the number of trainable
parameters lower than 5 Million (M). After indicating best network
architecture, we further improve the network performance by applying attention
schemes to multiple feature maps extracted from middle layers of the network.
To deal with the issue of increasing the model footprint as using attention
schemes, we apply the quantization technique to satisfies the number trainable
parameter of the model lower than 5 M. By conducting extensive experiments on
the benchmark datasets NWPU-RESISC45, we achieve a robust and low-complexity
model, which is very competitive to the state-of-the-art systems and potential
for real-life applications on edge devices.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Systematic Architectural Design of Scale Transformed Attention Condenser
DNNs via Multi-Scale Class Representational Response Similarity Analysis [93.0013343535411]
We propose a novel type of analysis called Multi-Scale Class Representational Response Similarity Analysis (ClassRepSim)
We show that adding STAC modules to ResNet style architectures can result in up to a 1.6% increase in top-1 accuracy.
Results from ClassRepSim analysis can be used to select an effective parameterization of the STAC module resulting in competitive performance.
arXiv Detail & Related papers (2023-06-16T18:29:26Z) - A Light-weight Deep Learning Model for Remote Sensing Image
Classification [70.66164876551674]
We present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC)
By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher-student models outperforms the state-of-the-art systems.
arXiv Detail & Related papers (2023-02-25T09:02:01Z) - Rewarded meta-pruning: Meta Learning with Rewards for Channel Pruning [19.978542231976636]
This paper proposes a novel method to reduce the parameters and FLOPs for computational efficiency in deep learning models.
We introduce accuracy and efficiency coefficients to control the trade-off between the accuracy of the network and its computing efficiency.
arXiv Detail & Related papers (2023-01-26T12:32:01Z) - Efficient deep learning models for land cover image classification [0.29748898344267777]
This work experiments with the BigEarthNet dataset for land use land cover (LULC) image classification.
We benchmark different state-of-the-art models, including Convolution Neural Networks, Multi-Layer Perceptrons, Visual Transformers, EfficientNets and Wide Residual Networks (WRN)
Our proposed lightweight model has an order of magnitude less trainable parameters, achieves 4.5% higher averaged f-score classification accuracy for all 19 LULC classes and is trained two times faster with respect to a ResNet50 state-of-the-art model that we use as a baseline.
arXiv Detail & Related papers (2021-11-18T00:03:14Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - AttendNets: Tiny Deep Image Recognition Neural Networks for the Edge via
Visual Attention Condensers [81.17461895644003]
We introduce AttendNets, low-precision, highly compact deep neural networks tailored for on-device image recognition.
AttendNets possess deep self-attention architectures based on visual attention condensers.
Results show AttendNets have significantly lower architectural and computational complexity when compared to several deep neural networks.
arXiv Detail & Related papers (2020-09-30T01:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.