Prototypical quadruplet for few-shot class incremental learning
- URL: http://arxiv.org/abs/2211.02947v3
- Date: Sat, 8 Apr 2023 09:16:05 GMT
- Title: Prototypical quadruplet for few-shot class incremental learning
- Authors: Sanchar Palit, Biplab Banerjee, Subhasis Chaudhuri
- Abstract summary: We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
- Score: 24.814045065163135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scarcity of data and incremental learning of new tasks pose two major
bottlenecks for many modern computer vision algorithms. The phenomenon of
catastrophic forgetting, i.e., the model's inability to classify previously
learned data after training with new batches of data, is a major challenge.
Conventional methods address catastrophic forgetting while compromising the
current session's training. Generative replay-based approaches, such as
generative adversarial networks (GANs), have been proposed to mitigate
catastrophic forgetting, but training GANs with few samples may lead to
instability. To address these challenges, we propose a novel method that
improves classification robustness by identifying a better embedding space
using an improved contrasting loss. Our approach retains previously acquired
knowledge in the embedding space, even when trained with new classes, by
updating previous session class prototypes to represent the true class mean,
which is crucial for our nearest class mean classification strategy. We
demonstrate the effectiveness of our method by showing that the embedding space
remains intact after training the model with new classes and outperforms
existing state-of-the-art algorithms in terms of accuracy across different
sessions.
Related papers
- Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
We propose Segue: Side-information guided generative unlearnable examples.
To improve transferability, we introduce side information such as true labels and pseudo labels.
It can resist JPEG compression, adversarial training, and some standard data augmentations.
arXiv Detail & Related papers (2023-10-24T06:22:37Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks.
We propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters.
arXiv Detail & Related papers (2023-06-05T15:11:59Z) - Prototype-Sample Relation Distillation: Towards Replay-Free Continual
Learning [14.462797749666992]
We propose a holistic approach to jointly learn the representation and class prototypes.
We propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data.
This method yields state-of-the-art performance in the task-incremental setting.
arXiv Detail & Related papers (2023-03-26T16:35:45Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.