Common Pets in 3D: Dynamic New-View Synthesis of Real-Life Deformable
Categories
- URL: http://arxiv.org/abs/2211.03889v1
- Date: Mon, 7 Nov 2022 22:42:42 GMT
- Title: Common Pets in 3D: Dynamic New-View Synthesis of Real-Life Deformable
Categories
- Authors: Samarth Sinha, Roman Shapovalov, Jeremy Reizenstein, Ignacio Rocco,
Natalia Neverova, Andrea Vedaldi, David Novotny
- Abstract summary: We introduce Common Pets in 3D (CoP3D), a collection of crowd-sourced videos showing around 4,200 distinct pets.
At test time, given a small number of video frames of an unseen object, Tracker-NeRF predicts the trajectories of its 3D points and generates new views.
Results on CoP3D reveal significantly better non-rigid new-view synthesis performance than existing baselines.
- Score: 80.30216777363057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining photorealistic reconstructions of objects from sparse views is
inherently ambiguous and can only be achieved by learning suitable
reconstruction priors. Earlier works on sparse rigid object reconstruction
successfully learned such priors from large datasets such as CO3D. In this
paper, we extend this approach to dynamic objects. We use cats and dogs as a
representative example and introduce Common Pets in 3D (CoP3D), a collection of
crowd-sourced videos showing around 4,200 distinct pets. CoP3D is one of the
first large-scale datasets for benchmarking non-rigid 3D reconstruction "in the
wild". We also propose Tracker-NeRF, a method for learning 4D reconstruction
from our dataset. At test time, given a small number of video frames of an
unseen object, Tracker-NeRF predicts the trajectories of its 3D points and
generates new views, interpolating viewpoint and time. Results on CoP3D reveal
significantly better non-rigid new-view synthesis performance than existing
baselines.
Related papers
- Virtual Pets: Animatable Animal Generation in 3D Scenes [84.0990909455833]
We introduce Virtual Pet, a novel pipeline to model realistic and diverse motions for target animal species within a 3D environment.
We leverage monocular internet videos and extract deformable NeRF representations for the foreground and static NeRF representations for the background.
We develop a reconstruction strategy, encompassing species-level shared template learning and per-video fine-tuning.
arXiv Detail & Related papers (2023-12-21T18:59:30Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views.
Our framework iteratively adds new superquadrics wherever the reconstruction error is high.
It provides consistently more accurate 3D reconstructions, even from images in the wild.
arXiv Detail & Related papers (2023-09-05T10:21:37Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life
3D Category Reconstruction [7.013794773659423]
Common Objects in 3D is a large-scale dataset with real multi-view images of object categories annotated with camera poses and ground truth 3D point clouds.
The dataset contains a total of 1.5 million frames from nearly 19,000 videos capturing objects from 50 MS-COCO categories.
We exploit this new dataset to conduct one of the first large-scale "in-the-wild" evaluations of several new-view-synthesis and category-centric 3D reconstruction methods.
arXiv Detail & Related papers (2021-09-01T17:59:05Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
We contribute DensePose 3D, a method that can learn such reconstructions in a weakly supervised fashion from 2D image annotations only.
Because it does not require 3D scans, DensePose 3D can be used for learning a wide range of articulated categories such as different animal species.
We show significant improvements compared to state-of-the-art non-rigid structure-from-motion baselines on both synthetic and real data on categories of humans and animals.
arXiv Detail & Related papers (2021-08-31T18:33:55Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
We show that complex encoder-decoder architectures exploit large amounts of per-category data.
We propose three ways to learn a class-specific global shape prior, directly from data.
Experiments on the popular ShapeNet dataset show that our method outperforms a zero-shot baseline by over 40%.
arXiv Detail & Related papers (2021-06-11T14:55:49Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.