Progress and summary of reinforcement learning on energy management of
MPS-EV
- URL: http://arxiv.org/abs/2211.04001v1
- Date: Tue, 8 Nov 2022 04:49:32 GMT
- Title: Progress and summary of reinforcement learning on energy management of
MPS-EV
- Authors: Jincheng Hu, Yang Lin, Liang Chu, Zhuoran Hou, Jihan Li, Jingjing
Jiang, Yuanjian Zhang
- Abstract summary: The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range.
This paper presents an in-depth analysis of the current research on RL-based EMS and summarizes the design elements of RL-based EMS.
- Score: 4.0629930354376755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high emission and low energy efficiency caused by internal combustion
engines (ICE) have become unacceptable under environmental regulations and the
energy crisis. As a promising alternative solution, multi-power source electric
vehicles (MPS-EVs) introduce different clean energy systems to improve
powertrain efficiency. The energy management strategy (EMS) is a critical
technology for MPS-EVs to maximize efficiency, fuel economy, and range.
Reinforcement learning (RL) has become an effective methodology for the
development of EMS. RL has received continuous attention and research, but
there is still a lack of systematic analysis of the design elements of RL-based
EMS. To this end, this paper presents an in-depth analysis of the current
research on RL-based EMS (RL-EMS) and summarizes the design elements of
RL-based EMS. This paper first summarizes the previous applications of RL in
EMS from five aspects: algorithm, perception scheme, decision scheme, reward
function, and innovative training method. The contribution of advanced
algorithms to the training effect is shown, the perception and control schemes
in the literature are analyzed in detail, different reward function settings
are classified, and innovative training methods with their roles are
elaborated. Finally, by comparing the development routes of RL and RL-EMS, this
paper identifies the gap between advanced RL solutions and existing RL-EMS.
Finally, this paper suggests potential development directions for implementing
advanced artificial intelligence (AI) solutions in EMS.
Related papers
- Data-driven modeling and supervisory control system optimization for plug-in hybrid electric vehicles [16.348774515562678]
Learning-based intelligent energy management systems for plug-in hybrid electric vehicles (PHEVs) are crucial for achieving efficient energy utilization.
Their application faces system reliability challenges in the real world, which prevents widespread acceptance by original equipment manufacturers (OEMs)
This paper proposes a real-vehicle application-oriented control framework, combining horizon-extended reinforcement learning (RL)-based energy management with the equivalent consumption minimization strategy (ECMS) to enhance practical applicability.
arXiv Detail & Related papers (2024-06-13T13:04:42Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
Evolutionary Reinforcement Learning (ERL) integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization.
This survey offers a comprehensive overview of the diverse research branches in ERL.
arXiv Detail & Related papers (2024-01-22T14:06:37Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - Towards Optimal Energy Management Strategy for Hybrid Electric Vehicle
with Reinforcement Learning [5.006685959891296]
Reinforcement learning (RL) has proven to be an effective solution for learning intelligent control strategies.
This paper presents a novel framework, in which we implement and integrate RL-based EMS with the open-source vehicle simulation tool called FASTSim.
The learned RL-based EMSs are evaluated on various vehicle models using different test drive cycles and prove to be effective in improving energy efficiency.
arXiv Detail & Related papers (2023-05-21T06:29:17Z) - Empirical Analysis of AI-based Energy Management in Electric Vehicles: A
Case Study on Reinforcement Learning [9.65075615023066]
Reinforcement learning-based (RL-based) energy management strategy (EMS) is considered a promising solution for the energy management of electric vehicles with multiple power sources.
This paper presents an empirical analysis of RL-based EMS in a Plug-in Hybrid Electric Vehicle (PHEV) and Fuel Cell Electric Vehicle (FCEV)
arXiv Detail & Related papers (2022-12-18T20:12:20Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
We propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to plan energy storage systems (ESS)
A quantitative performance comparison proved that the DRL agent outperforms the scenario-based optimization (SO) algorithm.
The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
arXiv Detail & Related papers (2022-12-12T02:24:50Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
Mobile edge computing (MEC) considered a novel paradigm for computation and delay-sensitive tasks in fifth generation (5G) networks and beyond.
This paper provides a comprehensive research review on free-enabled RL and offers insight for development.
arXiv Detail & Related papers (2022-01-27T10:02:54Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Data-Driven Transferred Energy Management Strategy for Hybrid Electric
Vehicles via Deep Reinforcement Learning [3.313774035672581]
This paper proposes a real-time EMS via incorporating the DRL method and transfer learning (TL)
The related EMSs are derived from and evaluated on the real-world collected driving cycle dataset from Transportation Secure Data Center.
Simulation results indicate that the presented transfer DRL-based EMS could effectively reduce time consumption and guarantee control performance.
arXiv Detail & Related papers (2020-09-07T17:53:07Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.