Spoofing Attack Detection in the Physical Layer with Commutative Neural
Networks
- URL: http://arxiv.org/abs/2211.04269v1
- Date: Tue, 8 Nov 2022 14:20:58 GMT
- Title: Spoofing Attack Detection in the Physical Layer with Commutative Neural
Networks
- Authors: Daniel Romero, Peter Gerstoft, Hadi Givehchian, Dinesh Bharadia
- Abstract summary: In a spoofing attack, an attacker impersonates a legitimate user to access or tamper with data intended for or produced by the legitimate user.
Existing schemes rely on long-term estimates, which makes it difficult to distinguish spoofing from movement of a legitimate user.
This limitation is here addressed by means of a deep neural network that implicitly learns the distribution of pairs of short-term RSS vector estimates.
- Score: 21.6399273864521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a spoofing attack, an attacker impersonates a legitimate user to access or
tamper with data intended for or produced by the legitimate user. In wireless
communication systems, these attacks may be detected by relying on features of
the channel and transmitter radios. In this context, a popular approach is to
exploit the dependence of the received signal strength (RSS) at multiple
receivers or access points with respect to the spatial location of the
transmitter. Existing schemes rely on long-term estimates, which makes it
difficult to distinguish spoofing from movement of a legitimate user. This
limitation is here addressed by means of a deep neural network that implicitly
learns the distribution of pairs of short-term RSS vector estimates. The
adopted network architecture imposes the invariance to permutations of the
input (commutativity) that the decision problem exhibits. The merits of the
proposed algorithm are corroborated on a data set that we collected.
Related papers
- Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Spoofing Attack Detection in the Physical Layer with Robustness to User
Movement [20.705184880085557]
In a spoofing attack, an attacker impersonates a legitimate user to access or modify data belonging to the latter.
This paper proposes a scheme that combines the decisions of a position-change detector based on a deep neural network to distinguish spoofing from movement.
arXiv Detail & Related papers (2023-10-17T07:18:03Z) - Adversarial Client Detection via Non-parametric Subspace Monitoring in
the Internet of Federated Things [3.280202415151067]
Internet of Federated Things (IoFT) represents a network of interconnected systems with federated learning as the backbone.
We propose an effective non-parametric approach FedRR to address the adversarial attack problem.
Our proposed method is capable of accurately detecting adversarial clients and controlling the false alarm rate under the scenario with no attack occurring.
arXiv Detail & Related papers (2023-10-02T18:25:02Z) - Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial
Attacks [70.51799606279883]
We introduce test-time adversarial attacks on deep neural networks (DNNs) for semantic communications.
We show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low.
arXiv Detail & Related papers (2022-12-20T17:13:22Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks.
Current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system.
We propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks.
arXiv Detail & Related papers (2022-12-13T17:51:32Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
This paper revisits the original problem of verifying ACAS Xu networks.
We propose to prepend an input quantization layer to the network.
Our technique can deliver exact verification results immune to floating-point error.
arXiv Detail & Related papers (2021-08-18T03:42:05Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Vision Meets Wireless Positioning: Effective Person Re-identification
with Recurrent Context Propagation [120.18969251405485]
Existing person re-identification methods rely on the visual sensor to capture the pedestrians.
Mobile phone can be sensed by WiFi and cellular networks in the form of a wireless positioning signal.
We propose a novel recurrent context propagation module that enables information to propagate between visual data and wireless positioning data.
arXiv Detail & Related papers (2020-08-10T14:19:15Z) - Multi-stage Jamming Attacks Detection using Deep Learning Combined with
Kernelized Support Vector Machine in 5G Cloud Radio Access Networks [17.2528983535773]
This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN.
It can detect and classify four types of jamming attacks: constant jamming, random jamming, jamming, and reactive jamming.
The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.
arXiv Detail & Related papers (2020-04-13T17:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.