Efficient Speech Translation with Pre-trained Models
- URL: http://arxiv.org/abs/2211.04939v1
- Date: Wed, 9 Nov 2022 15:07:06 GMT
- Title: Efficient Speech Translation with Pre-trained Models
- Authors: Zhaolin Li, Jan Niehues
- Abstract summary: We investigate efficient strategies to build cascaded and end-to-end speech translation systems based on pre-trained models.
While the end-to-end models show superior translation performance to cascaded ones, the application of this technology has a limitation on the need for additional end-to-end training data.
- Score: 13.107314023500349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When building state-of-the-art speech translation models, the need for large
computational resources is a significant obstacle due to the large training
data size and complex models. The availability of pre-trained models is a
promising opportunity to build strong speech translation systems efficiently.
In a first step, we investigate efficient strategies to build cascaded and
end-to-end speech translation systems based on pre-trained models. Using this
strategy, we can train and apply the models on a single GPU. While the
end-to-end models show superior translation performance to cascaded ones, the
application of this technology has a limitation on the need for additional
end-to-end training data. In a second step, we proposed an additional
similarity loss to encourage the model to generate similar hidden
representations for speech and transcript. Using this technique, we can
increase the data efficiency and improve the translation quality by 6 BLEU
points in scenarios with limited end-to-end training data.
Related papers
- Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - Low-Resource Cross-Lingual Adaptive Training for Nigerian Pidgin [3.2039731457723604]
We aim to improve upon both text classification and translation of Nigerian Pidgin (Naija) by collecting a large-scale parallel English-Pidgin corpus.
Our studies show that English pre-trained language models serve as a stronger prior than multilingual language models on English-Pidgin tasks with up to 2.38 BLEU improvements.
arXiv Detail & Related papers (2023-07-01T16:47:36Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - Unsupervised Pre-Training For Data-Efficient Text-to-Speech On Low
Resource Languages [15.32264927462068]
We propose an unsupervised pre-training method for a sequence-to-sequence TTS model by leveraging large untranscribed speech data.
The main idea is to pre-train the model to reconstruct de-warped mel-spectrograms from warped ones.
We empirically demonstrate the effectiveness of our proposed method in low-resource language scenarios.
arXiv Detail & Related papers (2023-03-28T01:26:00Z) - Improving Neural Machine Translation by Denoising Training [95.96569884410137]
We present a simple and effective pretraining strategy Denoising Training DoT for neural machine translation.
We update the model parameters with source- and target-side denoising tasks at the early stage and then tune the model normally.
Experiments show DoT consistently improves the neural machine translation performance across 12 bilingual and 16 multilingual directions.
arXiv Detail & Related papers (2022-01-19T00:11:38Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - Improving Neural Machine Translation by Bidirectional Training [85.64797317290349]
We present a simple and effective pretraining strategy -- bidirectional training (BiT) for neural machine translation.
Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally.
Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs significantly higher.
arXiv Detail & Related papers (2021-09-16T07:58:33Z) - Paraphrastic Representations at Scale [134.41025103489224]
We release trained models for English, Arabic, German, French, Spanish, Russian, Turkish, and Chinese languages.
We train these models on large amounts of data, achieving significantly improved performance from the original papers.
arXiv Detail & Related papers (2021-04-30T16:55:28Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.