UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for
Evaluating Unconstrained Handwriting Image Recognition in Vietnamese
- URL: http://arxiv.org/abs/2211.05407v1
- Date: Thu, 10 Nov 2022 08:23:54 GMT
- Title: UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for
Evaluating Unconstrained Handwriting Image Recognition in Vietnamese
- Authors: Nghia Hieu Nguyen, Duong T.D. Vo, Kiet Van Nguyen
- Abstract summary: In Vietnamese, besides the modern Latin characters, there are accent and letter marks together with characters that draw confusion to state-of-the-art handwriting recognition methods.
As a low-resource language, there are not many datasets for researching handwriting recognition in Vietnamese.
Recent works evaluated offline handwriting recognition methods in Vietnamese using images from an online handwriting dataset constructed by connecting pen stroke coordinates without further processing.
This paper proposes the Transferring method to construct a handwriting image dataset that associates crucial natural attributes required for offline handwriting images.
- Score: 2.8360662552057323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognizing handwriting images is challenging due to the vast variation in
writing style across many people and distinct linguistic aspects of writing
languages. In Vietnamese, besides the modern Latin characters, there are accent
and letter marks together with characters that draw confusion to
state-of-the-art handwriting recognition methods. Moreover, as a low-resource
language, there are not many datasets for researching handwriting recognition
in Vietnamese, which makes handwriting recognition in this language have a
barrier for researchers to approach. Recent works evaluated offline handwriting
recognition methods in Vietnamese using images from an online handwriting
dataset constructed by connecting pen stroke coordinates without further
processing. This approach obviously can not measure the ability of recognition
methods effectively, as it is trivial and may be lack of features that are
essential in offline handwriting images. Therefore, in this paper, we propose
the Transferring method to construct a handwriting image dataset that
associates crucial natural attributes required for offline handwriting images.
Using our method, we provide a first high-quality synthetic dataset which is
complex and natural for efficiently evaluating handwriting recognition methods.
In addition, we conduct experiments with various state-of-the-art methods to
figure out the challenge to reach the solution for handwriting recognition in
Vietnamese.
Related papers
- Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models.
We generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning.
Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words.
arXiv Detail & Related papers (2024-02-27T01:57:09Z) - Representing Online Handwriting for Recognition in Large Vision-Language
Models [8.344510330567495]
We propose a novel tokenized representation of digital ink (online handwriting) that includes both a time-ordered sequence of strokes as text, and as image.
We show that this representation yields results comparable to or better than state-of-the-art online handwriting recognizers.
arXiv Detail & Related papers (2024-02-23T13:11:10Z) - MetaScript: Few-Shot Handwritten Chinese Content Generation via
Generative Adversarial Networks [15.037121719502606]
We propose MetaScript, a novel content generation system designed to address the diminishing presence of personal handwriting styles in the digital representation of Chinese characters.
Our approach harnesses the power of few-shot learning to generate Chinese characters that retain the individual's unique handwriting style and maintain the efficiency of digital typing.
arXiv Detail & Related papers (2023-12-25T17:31:19Z) - Orientation-Independent Chinese Text Recognition in Scene Images [61.34060587461462]
We take the first attempt to extract orientation-independent visual features by disentangling content and orientation information of text images.
Specifically, we introduce a Character Image Reconstruction Network (CIRN) to recover corresponding printed character images with disentangled content and orientation information.
arXiv Detail & Related papers (2023-09-03T05:30:21Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
This paper attempts to design and develop a model that can recognize handwritten characters for Kurdish alphabets using deep learning techniques.
A comprehensive dataset was created for handwritten Kurdish characters, which contains more than 40 thousand images.
The tested results reported a 96% accuracy rate, and training accuracy reported a 97% accuracy rate.
arXiv Detail & Related papers (2022-10-18T16:48:28Z) - Boosting Modern and Historical Handwritten Text Recognition with
Deformable Convolutions [52.250269529057014]
Handwritten Text Recognition (HTR) in free-volution pages is a challenging image understanding task.
We propose to adopt deformable convolutions, which can deform depending on the input at hand and better adapt to the geometric variations of the text.
arXiv Detail & Related papers (2022-08-17T06:55:54Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
We introduce contrastive learning and masked image modeling to learn discrimination and generation of text images.
Our method outperforms previous self-supervised text recognition methods by 10.2%-20.2% on irregular scene text recognition datasets.
Our proposed text recognizer exceeds previous state-of-the-art text recognition methods by averagely 5.3% on 11 benchmarks, with similar model size.
arXiv Detail & Related papers (2022-07-01T03:50:26Z) - Content and Style Aware Generation of Text-line Images for Handwriting
Recognition [4.301658883577544]
We propose a generative method for handwritten text-line images conditioned on both visual appearance and textual content.
Our method is able to produce long text-line samples with diverse handwriting styles.
arXiv Detail & Related papers (2022-04-12T05:52:03Z) - Letter-level Online Writer Identification [86.13203975836556]
We focus on a novel problem, letter-level online writer-id, which requires only a few trajectories of written letters as identification cues.
A main challenge is that a person often writes a letter in different styles from time to time.
We refer to this problem as the variance of online writing styles (Var-O-Styles)
arXiv Detail & Related papers (2021-12-06T07:21:53Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
We propose SmartPatch, a new technique increasing the performance of current state-of-the-art methods.
We combine the well-known patch loss with information gathered from the parallel trained handwritten text recognition system.
This leads to a more enhanced local discriminator and results in more realistic and higher-quality generated handwritten words.
arXiv Detail & Related papers (2021-05-21T18:34:21Z) - Spectral Graph-based Features for Recognition of Handwritten Characters:
A Case Study on Handwritten Devanagari Numerals [0.0]
We propose an approach that exploits the robust graph representation and spectral graph embedding concept to represent handwritten characters.
For corroboration of the efficacy of the proposed method, extensive experiments were carried out on the standard handwritten numeral Computer Vision Pattern Recognition, Unit of Indian Statistical Institute Kolkata dataset.
arXiv Detail & Related papers (2020-07-07T08:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.