A generic framework for genuine multipartite entanglement detection
- URL: http://arxiv.org/abs/2211.05563v1
- Date: Thu, 10 Nov 2022 13:35:57 GMT
- Title: A generic framework for genuine multipartite entanglement detection
- Authors: Xin-Yu Xu, Qing Zhou, Shuai Zhao, Shu-Ming Hu, Li Li, Nai-Le Liu, Kai
Chen
- Abstract summary: We present an exquisite procedure that generates novel entanglement witness for arbitrary targeted state.
With excellent noise tolerance, our framework should be broadly applicable to witness genuine multipartite entanglement.
- Score: 15.037030262271992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Design of detection strategies for multipartite entanglement stands as a
central importance on our understanding of fundamental quantum mechanics and
has had substantial impact on quantum information applications. However,
accurate and robust detection approaches are severely hindered, particularly
when the number of nodes grows rapidly like in a quantum network. Here we
present an exquisite procedure that generates novel entanglement witness for
arbitrary targeted state via a generic and operational framework. The framework
enjoys a systematic and high-efficient character and allows to substantiate
genuine multipartite entanglement for a variety of states that arise naturally
in practical situations, and to dramatically outperform currently standard
methods. With excellent noise tolerance, our framework should be broadly
applicable to witness genuine multipartite entanglement in various practically
scenarios, and to facilitate making the best use of entangled resources in the
emerging area of quantum network.
Related papers
- Scalable multipartite entanglement criteria for continuous variables [6.181008505226926]
We propose a quite general entanglement detection method for all kinds of multipartite entanglement of multimode continuous variable systems.
Our criterion can detect entanglement, genuine entanglement and other kinds of inseparabilities almost imidiately.
arXiv Detail & Related papers (2024-11-05T13:27:19Z) - High-dimentional Multipartite Entanglement Structure Detection with Low Cost [18.876952671920133]
We propose a neural network model to generate representations suitable for entanglement structure detection.
Our method achieves over 95% detection accuracy for up to 19 qubits systems.
arXiv Detail & Related papers (2024-08-23T12:09:26Z) - Metrological Characterization of Multipartite Continuous-Variable non-Gaussian Entanglement Structure [0.0]
We introduce a method for detecting multipartite entanglement structures in continuous variable systems.
We demonstrate the effectiveness of our method on over $105$ randomly generated multimode-entangled quantum states.
This work provides a general framework for characterizing entanglement structures in diverse continuous variable systems.
arXiv Detail & Related papers (2024-08-22T17:11:13Z) - Improved criteria of detecting multipartite entanglement structure [7.236334007028333]
We propose a systematic method to construct powerful entanglement witnesses which identify better the multipartite entanglement structures.
Our results may be applied to many quantum information processing tasks.
arXiv Detail & Related papers (2024-06-11T14:01:22Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.