Regression as Classification: Influence of Task Formulation on Neural
Network Features
- URL: http://arxiv.org/abs/2211.05641v1
- Date: Thu, 10 Nov 2022 15:13:23 GMT
- Title: Regression as Classification: Influence of Task Formulation on Neural
Network Features
- Authors: Lawrence Stewart (SIERRA), Francis Bach (SIERRA), Quentin Berthet,
Jean-Philippe Vert
- Abstract summary: Neural networks can be trained to solve regression problems by using gradient-based methods to minimize the square loss.
practitioners often prefer to reformulate regression as a classification problem, observing that training on the cross entropy loss results in better performance.
By focusing on two-layer ReLU networks, we explore how the implicit bias induced by gradient-based optimization could partly explain the phenomenon.
- Score: 16.239708754973865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks can be trained to solve regression problems by using
gradient-based methods to minimize the square loss. However, practitioners
often prefer to reformulate regression as a classification problem, observing
that training on the cross entropy loss results in better performance. By
focusing on two-layer ReLU networks, which can be fully characterized by
measures over their feature space, we explore how the implicit bias induced by
gradient-based optimization could partly explain the above phenomenon. We
provide theoretical evidence that the regression formulation yields a measure
whose support can differ greatly from that for classification, in the case of
one-dimensional data. Our proposed optimal supports correspond directly to the
features learned by the input layer of the network. The different nature of
these supports sheds light on possible optimization difficulties the square
loss could encounter during training, and we present empirical results
illustrating this phenomenon.
Related papers
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
We study the least-square regression problem with a two-layer fully-connected neural network, with ReLU activation function, trained by gradient flow.
Our first result is a generalization result, that requires no assumptions on the underlying regression function or the noise other than that they are bounded.
arXiv Detail & Related papers (2024-10-08T16:54:23Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
We look for optimal network parameters by applying a gradient descent over a regularized loss function.
Within this framework, the optimal neuron-interaction matrices correspond to Hebbian kernels revised by a reiterated unlearning protocol.
arXiv Detail & Related papers (2023-08-01T15:04:30Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
We recognize that the non-linear behavior of the ReLU function gives rise to a natural clustering.
We propose a method to increase the level of interpretability of a fully connected feedforward ReLU neural network.
arXiv Detail & Related papers (2021-10-13T09:24:11Z) - Deep learning: a statistical viewpoint [120.94133818355645]
Deep learning has revealed some major surprises from a theoretical perspective.
In particular, simple gradient methods easily find near-perfect solutions to non-optimal training problems.
We conjecture that specific principles underlie these phenomena.
arXiv Detail & Related papers (2021-03-16T16:26:36Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
More gradient updates decrease the expressivity of the current value network.
We demonstrate this phenomenon on Atari and Gym benchmarks, in both offline and online RL settings.
arXiv Detail & Related papers (2020-10-27T17:55:16Z) - The Break-Even Point on Optimization Trajectories of Deep Neural
Networks [64.7563588124004]
We argue for the existence of the "break-even" point on this trajectory.
We show that using a large learning rate in the initial phase of training reduces the variance of the gradient.
We also show that using a low learning rate results in bad conditioning of the loss surface even for a neural network with batch normalization layers.
arXiv Detail & Related papers (2020-02-21T22:55:51Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.