Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings
- URL: http://arxiv.org/abs/2211.05717v2
- Date: Fri, 11 Nov 2022 03:34:38 GMT
- Title: Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings
- Authors: Ana Mar\'ia Quintero-Ossa and Jes\'us Solano and Hern\'an Jarc\'ia and
David Zarruk and Alejandro Correa Bahnsen and Carlos Valencia
- Abstract summary: Privacy-preserving machine learning in data-sharing processes is an ever-critical task.
This paper presents an innovative framework that uses Representation Learning via autoencoders to generate privacy-preserving embedded data.
- Score: 57.45332961252628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-preserving machine learning in data-sharing processes is an
ever-critical task that enables collaborative training of Machine Learning (ML)
models without the need to share the original data sources. It is especially
relevant when an organization must assure that sensitive data remains private
throughout the whole ML pipeline, i.e., training and inference phases. This
paper presents an innovative framework that uses Representation Learning via
autoencoders to generate privacy-preserving embedded data. Thus, organizations
can share the data representation to increase machine learning models'
performance in scenarios with more than one data source for a shared predictive
downstream task.
Related papers
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Assessment of Differentially Private Synthetic Data for Utility and
Fairness in End-to-End Machine Learning Pipelines for Tabular Data [3.555830838738963]
Differentially private (DP) synthetic data sets are a solution for sharing data while preserving the privacy of individual data providers.
We identify the most effective synthetic data generation techniques for training and evaluating machine learning models.
arXiv Detail & Related papers (2023-10-30T03:37:16Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
We introduce Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU)
FRAMU incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies.
Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models.
arXiv Detail & Related papers (2023-09-19T03:13:17Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Applied Federated Learning: Architectural Design for Robust and
Efficient Learning in Privacy Aware Settings [0.8454446648908585]
The classical machine learning paradigm requires the aggregation of user data in a central location.
Centralization of data poses risks, including a heightened risk of internal and external security incidents.
Federated learning with differential privacy is designed to avoid the server-side centralization pitfall.
arXiv Detail & Related papers (2022-06-02T00:30:04Z) - Privacy-preserving Generative Framework Against Membership Inference
Attacks [10.791983671720882]
We design a privacy-preserving generative framework against membership inference attacks.
We first map the source data to the latent space through the VAE model to get the latent code, then perform noise process satisfying metric privacy on the latent code, and finally use the VAE model to reconstruct the synthetic data.
Our experimental evaluation demonstrates that the machine learning model trained with newly generated synthetic data can effectively resist membership inference attacks and still maintain high utility.
arXiv Detail & Related papers (2022-02-11T06:13:30Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.