Semi-supervised learning for continuous emotional intensity controllable
speech synthesis with disentangled representations
- URL: http://arxiv.org/abs/2211.06160v2
- Date: Mon, 29 May 2023 06:40:05 GMT
- Title: Semi-supervised learning for continuous emotional intensity controllable
speech synthesis with disentangled representations
- Authors: Yoori Oh, Juheon Lee, Yoseob Han, Kyogu Lee
- Abstract summary: We propose a novel method to control the continuous intensity of emotions using semi-supervised learning.
The experimental results showed that the proposed method was superior in controllability and naturalness.
- Score: 16.524515747017787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent text-to-speech models have reached the level of generating natural
speech similar to what humans say. But there still have limitations in terms of
expressiveness. The existing emotional speech synthesis models have shown
controllability using interpolated features with scaling parameters in
emotional latent space. However, the emotional latent space generated from the
existing models is difficult to control the continuous emotional intensity
because of the entanglement of features like emotions, speakers, etc. In this
paper, we propose a novel method to control the continuous intensity of
emotions using semi-supervised learning. The model learns emotions of
intermediate intensity using pseudo-labels generated from phoneme-level
sequences of speech information. An embedding space built from the proposed
model satisfies the uniform grid geometry with an emotional basis. The
experimental results showed that the proposed method was superior in
controllability and naturalness.
Related papers
- EmoSphere++: Emotion-Controllable Zero-Shot Text-to-Speech via Emotion-Adaptive Spherical Vector [26.656512860918262]
EmoSphere++ is an emotion-controllable zero-shot TTS model that can control emotional style and intensity to resemble natural human speech.
We introduce a novel emotion-adaptive spherical vector that models emotional style and intensity without human annotation.
We employ a conditional flow matching-based decoder to achieve high-quality and expressive emotional TTS in a few sampling steps.
arXiv Detail & Related papers (2024-11-04T21:33:56Z) - Learning Frame-Wise Emotion Intensity for Audio-Driven Talking-Head Generation [59.81482518924723]
We propose a method for capturing and generating subtle shifts for talking-head generation.
We develop a talking-head framework that is capable of generating a variety of emotions with precise control over intensity levels.
Experiments and analyses validate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-09-29T01:02:01Z) - Emotional Dimension Control in Language Model-Based Text-to-Speech: Spanning a Broad Spectrum of Human Emotions [37.075331767703986]
Current emotional text-to-speech systems face challenges in mimicking a broad spectrum of human emotions.
This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance.
It can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training.
arXiv Detail & Related papers (2024-09-25T07:16:16Z) - EmoSphere-TTS: Emotional Style and Intensity Modeling via Spherical Emotion Vector for Controllable Emotional Text-to-Speech [34.03787613163788]
EmoSphere-TTS synthesizes expressive emotional speech by using a spherical emotion vector to control the emotional style and intensity of the synthetic speech.
We propose a dual conditional adversarial network to improve the quality of generated speech by reflecting the multi-aspect characteristics.
arXiv Detail & Related papers (2024-06-12T01:40:29Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components.
We propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion.
arXiv Detail & Related papers (2023-12-29T08:06:45Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - AffectEcho: Speaker Independent and Language-Agnostic Emotion and Affect
Transfer for Speech Synthesis [13.918119853846838]
Affect is an emotional characteristic encompassing valence, arousal, and intensity, and is a crucial attribute for enabling authentic conversations.
We propose AffectEcho, an emotion translation model, that uses a Vector Quantized codebook to model emotions within a quantized space.
We demonstrate the effectiveness of our approach in controlling the emotions of generated speech while preserving identity, style, and emotional cadence unique to each speaker.
arXiv Detail & Related papers (2023-08-16T06:28:29Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.