Lifelong and Continual Learning Dialogue Systems
- URL: http://arxiv.org/abs/2211.06553v2
- Date: Mon, 17 Jun 2024 02:10:48 GMT
- Title: Lifelong and Continual Learning Dialogue Systems
- Authors: Sahisnu Mazumder, Bing Liu,
- Abstract summary: Book introduces the new paradigm of lifelong learning dialogue systems.
As the systems chat more and more with users or learn more from external sources, they become more knowledgeable and better at conversing.
- Score: 14.965054800464259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue systems, commonly known as chatbots, have gained escalating popularity in recent times due to their wide-spread applications in carrying out chit-chat conversations with users and task-oriented dialogues to accomplish various user tasks. Existing chatbots are usually trained from pre-collected and manually-labeled data and/or written with handcrafted rules. Many also use manually-compiled knowledge bases (KBs). Their ability to understand natural language is still limited, and they tend to produce many errors resulting in poor user satisfaction. Typically, they need to be constantly improved by engineers with more labeled data and more manually compiled knowledge. This book introduces the new paradigm of lifelong learning dialogue systems to endow chatbots the ability to learn continually by themselves through their own self-initiated interactions with their users and working environments to improve themselves. As the systems chat more and more with users or learn more and more from external sources, they become more and more knowledgeable and better and better at conversing. The book presents the latest developments and techniques for building such continual learning dialogue systems that continuously learn new language expressions and lexical and factual knowledge during conversation from users and off conversation from external sources, acquire new training examples during conversation, and learn conversational skills. Apart from these general topics, existing works on continual learning of some specific aspects of dialogue systems are also surveyed. The book concludes with a discussion of open challenges for future research.
Related papers
- Curriculum-Driven Edubot: A Framework for Developing Language Learning Chatbots Through Synthesizing Conversational Data [23.168347070904318]
We present Curriculum-Driven EduBot, a framework for developing a chatbots that combines the interactive features of chatbots with the systematic material of English textbooks.
We begin by extracting pertinent topics from textbooks and using large language models to generate dialogues related to these topics.
arXiv Detail & Related papers (2023-09-28T19:14:18Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUG is a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format.
We show that modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation.
We deploy modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference.
arXiv Detail & Related papers (2023-04-16T18:16:35Z) - User Adaptive Language Learning Chatbots with a Curriculum [55.63893493019025]
We adapt lexically constrained decoding to a dialog system, which urges the dialog system to include curriculum-aligned words and phrases in its generated utterances.
The evaluation result demonstrates that the dialog system with curriculum infusion improves students' understanding of target words and increases their interest in practicing English.
arXiv Detail & Related papers (2023-04-11T20:41:41Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - KPT: Keyword-guided Pre-training for Grounded Dialog Generation [82.68787152707455]
We propose KPT (guided Pre-Training), a novel self-supervised pre-training method for grounded dialog generation.
Specifically, we use a pre-trained language model to extract the most uncertain tokens in the dialog as keywords.
We conduct extensive experiments on various few-shot knowledge-grounded generation tasks, including grounding on dialog acts, knowledge graphs, persona descriptions, and Wikipedia passages.
arXiv Detail & Related papers (2022-12-04T04:05:01Z) - Dynamic Planning in Open-Ended Dialogue using Reinforcement Learning [35.67318830455459]
We develop a real-time, open-ended dialogue system that uses reinforcement learning (RL) to power a bot's conversational skill at scale.
Our work pairs the succinct embedding of the conversation state generated using SOTA (supervised) language models with RL techniques that are particularly suited to a dynamic action space.
arXiv Detail & Related papers (2022-07-25T16:12:33Z) - Learning as Conversation: Dialogue Systems Reinforced for Information
Acquisition [30.91417206129677]
We propose novel AI-empowered chat bots for learning as conversation where a user does not read a passage but gains information and knowledge through conversation with a teacher bot.
Our information-acquisition-oriented dialogue system employs a novel adaptation of reinforced self-play so that the system can be transferred to various domains without in-domain dialogue data.
arXiv Detail & Related papers (2022-05-29T19:42:25Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Lifelong Knowledge Learning in Rule-based Dialogue Systems [10.229787631112742]
This paper proposes to build such a learning capability in a rule-based chatbots so that it can continuously acquire new knowledge in its chatting with users.
This work is useful because many real-life deployed chatbots are rule-based.
arXiv Detail & Related papers (2020-11-19T13:33:12Z) - Lifelong Learning Dialogue Systems: Chatbots that Self-Learn On the Job [21.87382385938692]
We propose to endowing the system the ability to continually learn new world knowledge.
We exploit the multi-user environment of such systems to self-learn through interactions with users via verb and non-verb means.
arXiv Detail & Related papers (2020-09-22T18:10:08Z) - Knowledge Injection into Dialogue Generation via Language Models [85.65843021510521]
InjK is a two-stage approach to inject knowledge into a dialogue generation model.
First, we train a large-scale language model and query it as textual knowledge.
Second, we frame a dialogue generation model to sequentially generate textual knowledge and a corresponding response.
arXiv Detail & Related papers (2020-04-30T07:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.